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Georges De Rham was born in Switzerland
on 10 September 1903. He started to study
chemistry, physics and biology at the Uni-
versity of Lausanne in 1921, but he soon
turned to mathematics. He defended his doc-
toral thesis entitled Sur l’Analysis situs des

variétés à n dimensions in Paris in 1931, be-
ing his advisor Henri Lebesgue. He became
a lecturer at the University of Lausanne in
1931, where he was promoted to extraordi-
nary professor in 1936 and to full professor in
1943. He retired and was given an honorary
appointment by Lausanne in 1971.

G. De Rham

He also held a position at the University of Geneva, where he was pro-
moted to full professor in 1953. He retired from Geneva and was given an
honorary position in 1973. In addition to these permanent appointments,
De Rham visited Harvard in 1949/50 and the Institute for Advanced Study
at Princeton in 1950 and again in 1957/58. He also visited the Tata Institute
in Bombay in 1966. He died in Lausanne on 9 October 1990.

In 1931, inspired in the work of Henri Poincaré and Élie Cartan, he
identified the De Rham cohomology groups as topological invariants and
in 1952, in his paper entitle Sur la réductibilité d’un espace de Riemann,
he proved the De Rham’s decomposition theorem, which have been widely
studied since then. The attempt to generalize this theorem has motivated
this work.
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CHAPTER 1

Introduction

In the first section of this chapter, we set notations and facts which will be
used along remaining chapters, being our main references [13], [40] and [48].
After this, we review most important results about product manifolds and
decompositions and finally we summarize our main contributions to this
topic.

1.1 Notation and preliminaries

Generalities

We always consider smooth connected manifold without boundary which
satisfies the Haussdorff property and the second countable axiom. We de-
note by C∞(M) and X(M) the functions and the vector fields over the
manifold M respectively, whereas TpM is the tangent space at p. Tangent
vectors are usually denoted by lower case letters and vector fields by upper
case or greek letters.

A semi-Riemannian manifold is a manifold M endowed with a symmetric
and nondegenerate bilinear form g. We call n the dimension of M and ν
the index of g. If ν = 0, then (M, g) is a Riemannian manifold and if n ≥ 2
and ν = 1 it is a Lorentzian manifold.

A vector v ∈ TpM is timelike, lightlike or spacelike if g(v, v) < 0,
g(v, v) = 0 or g(v, v) > 0 respectively. By convention, the zero vector
is supposed to be spacelike. The norm is given by |v| =

√
|g(v, v)| and the

1



2 1.1. Notation and preliminaries

sign εv is defined as

εv =






−1 if v is timelike.
0 if v is lightlike.
1 if v is nonzero and spacelike.

A reference frame is a timelike and unitary vector field and a frame at
a point p is an orthonormal basis {e1, . . . , en} of TpM . In this case, we
simplify the notation εei

to εi. A frame field is a set {E1, . . . , En} of vector
fields which are a frame at each point.

The symbol ∇ denotes the Levi-Civita connection associated to g as well
as the gradient of a function. Given a vector field V , the divergence is the
function defined as div Vp =

∑
i εig(∇ei

V, ei), where {e1, . . . , en} is a frame
at p. If f ∈ C∞(M), its Laplacian is △f = div ∇f and its hessian the
(0, 2)-tensor given by Hessf (X, Y ) = g(∇X∇f, Y ).

We say that a vector field V is conformal if LV g = 2ag for certain
a ∈ C∞(M), where LV is the Lie derivative along V . Since

(LV g) (v, w) = g(∇vV, w) + g(v, ∇wV )

for all v, w ∈ TM , it can be easily checked that a = div V
n

. If (LV g) (v, w) =
2ag(v, w) only for v, w ∈ V ⊥ we say that V is orthogonally conformal. In
this case, a coincides with

1
n − 1

(
div V − εV

|V |2 g(∇V V, V )
)

(1.1)

in the open set {p ∈ M : |V |p 6= 0}. When a = 0, i.e., LV g = 0, the vector
field V is called killing. It is well known that local flow of a conformal or
killing vector field are conformal diffeomorphism or isometries respectively.

On the other hand, V is closed if its metrically equivalent one form is
closed, i.e., g(∇vV, w) = g(v, ∇wV ) for all v, w ∈ TM . This implies that V
is locally the gradient of certain function. The concept of irrotational vector
field is weaker than the closed one and it is stated as g(∇vV, w) = g(v, ∇wV )
for all v, w ∈ V ⊥.

Given a curve γ : [0, 1] → M and v ∈ Tγ(0)M we denote by Pγ,γ(0),γ(t)(v)
the parallel translation of v along γ from γ(0) to γ(t). Fixed p ∈ M , we
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can consider the map

Ωp(M) → Iso(TpM)
γ 7→ Pγ,p,p

where Ωp(M) are closed curves at p and Iso(TpM) the isometries of TpM .
The image of this map constitutes a subgroup of Iso(TpM) called the
holonomy of M , Hol(M, p). Since Hol(M, p) and Hol(M, q) are isomor-
phic groups, the point is usually omitted. A semi-Riemannian manifold is
nondegenerately reducible at a point p if there exists a nontrivial and non-
degenerate subspace Sp ≤ TpM such that Φ(Sp) = Sp for all Φ ∈ Hol(M, p).

The curvature tensor of a manifold is given by R(X, Y, Z) = ∇X∇Y Z −
∇Y ∇XZ − ∇[X,Y ]Z and the sectional curvature of a nondegenerate tangent
plane Π = span(v, w) is

K(Π) =
g(R(v, w, w), v)

g(v, v)g(w, w) − g(v, w)2 .

Given a degenerate plane Π in a Lorentzian manifold, we define its light-
like sectional curvature respect to a lightlike vector u ∈ Π as

Ku(Π) =
g(R(v, u, u), v)

g(v, v)
,

where v ∈ Π is any spacelike vector, [31]. This curvature depends on the
choosen lightlike vector, but not on the spacelike one. Neverthess, the sign
of Ku only depends on Π and thus it makes sense to say positive, zero
or negative lightlike sectional curvature without explicit mention of the
choosen u ∈ Π. We can avoid the dependence respect to the lightlike vector
fixing a reference frame ξ. In this case, the lightlike sectional curvature
respect to ξ is denoted by Kξ and is computed taking the unique lightlike
vector u ∈ Π with g(u, ξ) = 1. If ξ′ is another reference frame then Kξ(Π) =
g(u, ξ′)2Kξ′(Π) where u ∈ Π is the unique lightlike vector such that g(u, ξ) =
1.

All submanifolds are supposed connected, nondegenerate and with the
induced metric. We denote by I the second fundamental form and we use
superindex for its intrinsic curvature. For example, RL, KL and RicL means
the curvature tensor, the sectional curvature and Ricci curvature of L re-
spectively.
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We say that a covering map p : E → M is normal if its group of
deck transformations acts transitively on the fibres. If E and M are semi-
Riemannian (Lorentzian) manifolds, we say that it is a semi-Riemannian
(Lorentzian) covering map if it is also a local isometry.

Foliations

A distribution of dimension k in a manifold M is a smooth map that assigns
to each p ∈ M a k-dimensional subspace of TpM . On the other hand, a
k-dimensional foliation is a partition of M into submanifolds of dimension
k, which are called leaves. A foliation always gives rise to a distribution
and, by the Frobenius theorem, an involutive (or integrable) distribution
gives rise to a foliation.

Both distributions and foliations are always supposed nondegenerate
and are denoted by calligraphic letters. Moreover, when we write a point
as a subscript, it means the distribution or the leaf through that point if
the letter is calligraphic or noncalligraphic repectively. Summarizing: F
denotes a foliation, Fp the distribution at p and Fp the leaf through p.
When it is appropriate, we write the point between parantheses instead of
subscript and even, in the case of a leaf, we omit it if it is not relevant.

By vF and vF⊥ we denote the projections of a vector v ∈ TpM onto
Fp and F⊥

p respectively. On the other hand, X ∈ F means a vector field
X ∈ X(M) such that Xp ∈ Fp for all p ∈ M .

An important kind of foliation are that given by the orthogonal distribu-
tion of an irrotational vector field without zeros. In this case, the leaves are
called orthogonal leaves and we denote the one through p by Lp. Recall that
any vector field on a two or one dimensional manifold is irrotational. By
convention, in a one dimensional manifold, the orthogonal leaf of a vector
field through a point simply means this point.

A point x is called regular if it exists an adapted chart (U, ϕ) to F , with
x ∈ U , such that each leaf of the foliation intersects U in a unique slice.
The open set U is called a regular neighborhood of x. If a point is regular,
then all points in its same leaf are regular and the leaf is refered as regular
leaf. A foliation is regular if all leaves are regular. In this case, the space of
leaves L, formed identifying all point in the same leaf, is a manifold except
for the Hausdorffness and the canonical projection η : M → L is an open
map, [40, 50].
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Figure 1.1: A nonregular foliation in R
2 − {0}.

We introduce now the holonomy group of a leaf F , [13]. Take x0, x1 ∈ F
and α : [0, 1] → F a curve with α(0) = x0, α(1) = x1 and α([0, 1]) ⊂ U ,
where U is an adapted neighborhood to the foliation. If Σ1 and Σ2 are
transverse section to F in x0 and x1, then we can construct a map f : Σ1 →
Σ2 assigning to each x ∈ Σ1 the intersection of Σ2 with the plaque of F in
U through x. This map is a local diffeomorphism and f(x0) = x1.

Take now α : [0, 1] → F an arbitrary curve and 0 = t0 < t1... < tn = 1
a partition of [0, 1] such that α([ti, ti+1]) ⊂ Ui, where each Ui is an adapted
neighborhood of F . Taking transverse section Σi at α(ti) and composing the
maps constructed as above, we obtain a local diffeomorphism f : Σ0 → Σn

such that f(x0) = x1, which we call the holomony map associated to α
and it is usually denoted by fα. This map is independent of the chosen
transverse sections and it only depends on the homothopy equivalence class
of α.

Now, we can take an homomorphism H : π1(F, x0) → G(Σ0, x0), where
G(Σ0, x0) are the germs of local diffeomorphisms of Σ0 which leave x0 fixed.
The group Im H does not depend on the base point x0 nor the transverse
section Σ0 and it is called the holonomy of the leaf and denoted by Hol(F ).
We say that F has not holonomy if its holonomy group is trivial and that
the foliation F has not holonomy if any leaf has not holonomy. Clearly,
simply connected or regular leaves has not holonomy.

Since we are given the same name and notation, there is a risk of con-
fusing the holonomy introduced here and the holonomy introduced in page
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Figure 1.2: Holonomy map associated to α.

3, although they are not related in general. In most cases we will refer to
the holonomy of a leaf and it will be clear when we are referring to the
holonomy of a manifold.

The second fundamental form of a foliation F is defined as I(X, Y ) =
(∇XY )F⊥ for all X, Y ∈ F . It is umbilic if there exists N ∈ X(M) such
that I(X, Y ) = g(X, Y )N for all X, Y ∈ F , i.e., the leaves are umbilic
submanifolds. This N is the mean curvature vector field of the foliation
and its metrically equivalent one form is called mean curvature form. If
g(∇XN, W ) = 0 for all X ∈ F and W ∈ F⊥, then the foliation is spheric
and in the case N ≡ 0 it is geodesic.

Product manifolds

Given two semi-Riemannian manifolds (M1, g1) and (M2, g2) and two posi-
tive functions (the twisted functions) λ1, λ2 ∈ C∞(M1 × M2) we call doubly
twisted product to the semi-Riemannian manifold (M1 × M2, λ2

1g1 + λ2
2g2),

which is denoted by M1 ×(λ1,λ2) M2. If λ1 ≡ 1 or λ2 ≡ 1 then it is called a
twisted product.

If λ1 ∈ C∞(M2) and λ2 ∈ C∞(M1), then it is still denoted by M1 ×(λ1,λ2)
M2, but it is called a doubly warped product and the functions are regarded
as warped functions. In this case, if λ1 ≡ 1 or λ2 ≡ 1 then we have a warped
product. In a twisted or warped product, the notation M1 ×(1,λ2) M2 (resp.
M1 ×(λ1,1) M2) is simplified to M1 ×λ2 M2 (resp. M1 λ1 × M2). In this case,
the first factor is called base (resp. the second) and the second one fibre
(resp. the first one).

The simplest metric that we can put in M1 × M2 is the direct product
metric g1 + g2, which corresponds to the case λ1 ≡ λ2 ≡ 1.
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An important class of Lorentzian warped product are those of the form
(R × L, −dt2 + f2g0) and (L × R, g0 − h2dt2), where (L, g0) is a Riemannian
manifold and f ∈ C∞(R), h ∈ C∞(L) are positive functions. The first
ones are called Generalized Robertson-Walker spaces, GRW in short, and
were introduced in [1] as a generalization of Robertson-Walker spaces. The
second ones are called static spaces and we consider them as a particular
type of static manifolds , which are of the form (L × R, g0 + εf 2dt2) and
denoted by L ×εf R, being ε = ±1.

The Levi-Civita connection in a doubly twisted product M1 ×(λ1,λ2) M2
is given by

∇XY = ∇̂XY +
2∑

i=1

g(X, ∇ ln λi)Pi(Y ) + g(Y, ∇ ln λi)Pi(X)

− g(Pi(X), Pi(Y ))∇ ln λi, (1.2)

where X, Y ∈ X(M1 × M2), ∇̂ is the Levi-Civita connection of the direct
product metric and Pi : TM1 × TM2 → TMi is the canonical projection.
On the other hand, the curvature tensor is

R(X, Y ) = R̂(X, Y ) +
2∑

i=1

1
λi

(
∇Y ∇λi ∧ Pi(X) − ∇X∇λi ∧ Pi(Y )

)

+
2∑

i,j=1

g(∇ ln λi, ∇ ln λj)Pi(X) ∧ Pj(Y ), (1.3)

where R̂ is the curvature tensor of the direct product metric and u ∧ v
denotes the linear map w 7→ g(w, v)u − g(w, u)v, [51].

It easily follows that the second fundamental form of the first canonical
foliation is given by I1 = P2(−∇ ln λ1)g whereas that of the second is I2 =
P1(−∇ ln λ2)g. Canonical foliations on a product manifold have different
geometrical properties depending on the kind of product metric, as table 1
shows.
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Product type

First

canonical

foliation

Second

canonical

foliation

Mean curvature

Doubly twisted
product

M1 ×(λ1,λ2) M2

Umbilic Umbilic N1 = −P2(∇ log λ1),
N2 = −P1(∇ log λ2)

Twisted product
M1 ×λ2

M2
Geodesic Umbilic N1 = 0,

N2 = −P1(∇ log λ2)

Doubly warped
product

M1 ×(λ1,λ2) M2

Umbilic with
closed mean

curvature

Umbilic with
closed mean

curvature

N1 = −∇ log λ1,
N2 = −∇ log λ2

Warped product
M1 ×λ2

M2
Geodesic Spherical N1 = 0,

N2 = −∇ log λ2

Direct product
M1 × M2

Geodesic Geodesic N1 = 0, N2 = 0

Table 1.Geometrical properties of the canonical foliations in a product manifold.

In the case of a doubly warped product M1 ×(λ1,λ2) M2, the mean cur-
vature vector fields are given by Ni = −∇ ln λi and thus the Levi-Civita
connection and curvature formulaes are simplified, even more if we distin-
guish cases.

In fact, if X, Y ∈ X(M1), V, W ∈ X(M2) and we denote by the same
letter the lift to M1 × M2, then

1. ∇XY = ∇1
XY − g(X, Y )∇ ln λ1 + g(X, ∇ ln λ1)Y + g(Y, ∇ ln λ1)X.

2. ∇V W = ∇2
V W − g(V, W )∇ ln λ2 + g(V, ∇ ln λ2)W + g(W, ∇ ln λ2)V .

3. ∇XV = ∇V X = g(∇ ln λ1, V )X + g(∇ ln λ2, X)V .

If moreover we suppose that X, Y , V and W are unitary and or-
thogonal vector fields and take Π1 = span(X, Y ), Π2 = span(V, W ) and
Π3 = span(X, V ), then the sectional curvature is given by
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1. K(Π1) = KM1 (Π1)+g(∇λ1,∇λ1)
λ2
1

− 1
λ1

(
εXHessλ1(X, X)+εY Hessλ1(Y, Y )

)
.

2. K(Π2) = KM2 (Π2)+g(∇λ2,∇λ2)
λ2
2

− 1
λ2

(
εV Hessλ2(V, V )+εW Hessλ2(W, W )

)
.

3. K(Π3) = − εV

λ1
Hessλ1(V, V ) − εX

λ2
Hessλ2(X, X) + g(∇λ1,∇λ2)

λ1λ2
.

Semi-Riemannian submersions
Given two semi-Riemnnian manifolds M (the total space) and B (the base
space), a semi-Riemannian submersion π : M → b is a submersion such that
the fibres π−1(b), b ∈ B, are semi-Riemannian submanifolds of M and π∗p

preserves the scalar product of vectors normal to the fibres for all p ∈ M ,
[48].

The tangent space to the fibre, denoted by V , is called vertical space
and its orthogonal is called horizontal space and denoted by H. The let-
ters X, Y, Z will denote horizontal vector fields and U, V, W vertical ones,
whereas E, F will be arbitrary vector field on M . Given E ∈ X(M), its
vertical and horizontal projection is denoted by EV and EH respectively.
The O’Neill tensors of a submersion are defined as [49],

T (E, F ) = (∇EV F V)H + (∇EV F H)V ,
A(E, F ) = (∇EHF H)V + (∇EHF V)H.

We say that a semi-Riemmnian submersion has umbilic fibres if the foliation
determined by them is umbilic, i.e., there exists a horizontal vector field
N ∈ X(M) such that T (V, W ) = g(V, W )N for all V, W ∈ V .

1.2 Antecedents

A standard process in mathematics is to build complex objects from simpler
ones. As an example of this, we have shown in the above section how to
construct different kind of product metrics on a product manifold.

Warped products were introduced by B. O’Neill and R.L. Bishop in
1969 to construct Riemannian manifolds with negative sectional curvature
[9], and twisted products (also called umbilic products) by R.L. Bishop to
study the local structure of Riemannian submersions with umbilic fibres, [8].
As far as we known, the first explicit definition of doubly warped product
appeared in [7] and of doubly twisted in [27]. These kind of product metrics
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have been widely studied, since calculations are simplified but they pro-
vide quite general manifolds. Recall that most of spacetime models of the
universe are warped products: Friedmann models, Schwarzschild, Kruskal,
Reissner-Nordström, De Sitter and anti De Sitter spaces...

Other standard process is the inverse of the above: decompose an object
into simpler components. With this aim, G. De Rham proved in 1952 his
famous decomposition theorem.

Theorem 1.2.1 ([17]). Let M be a complete and simply con-
nected Riemannian manifold. If it is reducible at a point, then it
is isometric to a direct product of irreducible factors. Moreover,
the factors are unique up to order.

This was generalized to the semi-Riemannian case by H. Wu asuming
the nondegenerate reducibility hypothesis, [63]. Later, S. Hiepko proved a
similar result which ensured the decomposition of a Riemann manifold as a
warped product, [34].

If M is nondegenerately reducible at a point p, we can obtain a distri-
bution on M defining Sx = Pγ,p,x(Sp), where Sp is the invariant subspace
at p and γ is any curve joining p and x. It can be shown that both S and
S⊥ are integrable distributions and, moreover, the corresponding foliations
are orthogonal, complementary and geodesic. Two such foliations is called
a direct product structure on M .

Following the proof of the De Rham-Wu theorem given in [40], the nonre-
ducibility hypothesis is only used to obtain a direct product structure as in
the above way. Therefore, using the language of foliation, the De Rham-Wu
theorem can be reformulated as follows: a complete and simply connected
semi-Riemannian manifold furnished with a direct product structure is iso-
metric to the direct product of two leaves and the foliations are identified
with the canonical ones of the product.

Following this point of view, many generalizations are been made. For
example, R. Ponge and H. Reckziegel showed that geometrical properties
of two complementary and orthogonal foliations determine the type of de-
composition, as table 1 suggests. Concretely,
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Theorem 1.2.2 ([51]). Let (M, g) be a simply connected semi-
Riemannian manifold with (F1, F2) two orthogonal and comple-
mentary foliations. Suppose that F1 is geodesic and with com-
plete leaves.

1. If F2 is umbilic then M is isometric to a twisted product.

2. If F2 is spheric then M is isometric to a warped product.

3. If F2 is geodesic then M is isometric to a direct product.

In any case, the foliations (F1, F2) are identified with the canon-
ical foliations of the product.

The proof of the above theorem is divided in two steps. First, the
diffeomorphic decomposition can be obtained applying the following

Theorem 1.2.3 ([51], semi-Riemmannian version of [10]). Let
M be a simply connected semi-Riemannian manifold furnished
with two orthogonal and complementary foliations. If one of
them is geodesic and with complete leaves, then M is diffeomor-
phic to a product manifold such that the foliations correspond to
the canonical foliations of the product.

Once they have obtained the diffeomorphic decomposition, they get the
metric decomposition applying the following.

Proposition 1.2.4 ([51]). Let M = M1 × M2 and call (F1, F2)
the canonical foliations. Suppose that g is a semi-Riemannian
metric such that F1 and F2 are orthogonal foliations. Then
(M, g) is

1. a doubly twisted product M1 ×(λ1,λ2) M2 if and only if F1
and F2 are umbilic.

2. a twisted product M1 ×λ2 M2 if and only if F1 is geodesic
and F2 umbilic.

3. a warped product M1 ×λ2 M2 if and only if F1 is geodesic
and F2 spheric.

4. a direct product if and only if F1 and F2 are geodesic.

Using different techniques, N. Koike proved a quite general result in this
direction.
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Theorem 1.2.5 ([41]). Let M be a simply connected semi-
Riemannian manifold and (F1, F2) two complementary, orthog-
onal and umbilic foliations. If the leaves of F1 are complete and
dim F1 ≥ 3, then M is isometric to a doubly twisted product of
two leaves.

Moreover, if dimF1 ≥ 1 and (∇XNi)F3−i = g(X, N3−i)Ni for
all X ∈ F3−i, where Ni are the mean curvature vector fields for
i = 1, 2, then M is a doubly warped product of two leaves.

It is a remarkable fact that the author also gave explicit expressions for
the twisted (respectively warped) functions. In the same way as above, the
proof is divided in two steps: the diffeomorphic and the metric decomposi-
tion.

To obtain the first, the author consider the notion of Ehresmann con-
nection, which is defined as follows: given a foliation F , a complementary
distribution D is called an Ehresmann connection for F if for any curves
α, β : [0, 1] → M with α(0) = β(0), α′ ∈ F and β′ ∈ D there exists a map
H : [0, 1] × [0, 1] → M such that H(t, 0) = α(t), H(0, s) = β(s), ∂tH ∈ F
and ∂sH ∈ D. If moreover the Ehresmann connection is integrable, then it
can be proved the following.

Theorem 1.2.6 ([11]). Let M be a simply connected manifold
furnished with a foliation. If it admits an integrable Ehresmann
connection, then M is diffeomorphic to the product of two leaves
and the foliations are identified with the canonical foliations of
the product.

If a semi-Riemannian manifold M is furnished with two orthogonal,
complementary and umbilic foliations F1, F2, then it can be shown that F2
is an integrable Ehresmann connection for F1 and the above theorem assures
the diffeomorphic decomposition. After this, the author obtain the metric
decomposition and the explicit expression of the twisted functions using
that, under the umbilicity hypothesis, the holomomy maps are conformal
diffeomorphism.

Other way to generalize the De Rham-Wu theorem is removing the sim-
ply connectedness hypothesis, which obviously is nonnecessary for a mani-
fold to be a global product. However, there are relatively simple examples
of non simply connected complete semi-Riemannian manifolds with a direct
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product structure which are not a global product. So, it arises the follo-
wing natural question: what is the necessary and sufficient condition for a
complete semi-Riemannian manifold with a direct product structure to be
a global product?

In 1973, P. Wang considered this problem obtaining the following result.

Theorem 1.2.7 ([62]). Let M be a complete semi-Riemannian
manifold furnished with a direct product structure (F1, F2). If
p ∈ M is a regular point for both foliations, then the direct
product of the leaves through p covers the manifold.

Moreover, he used the theory of bundle-like foliations to give a necessary
and sufficient condition for a Riemannian manifold furnished with a direct
product structure to be a global direct product.

Theorem 1.2.8 ([62]). Let M be a complete Riemannian mani-
fold furnished with a direct product structure (F1, F2). If F1 is a
regular foliation, p ∈ M is a regular point for F2 and the leaves
through p intersect each other only at p, then M is isometric to
the direct product of them.

Wang’s paper was pioneering in this topic and, as far as we know, the most
important.

Decomposition theorems on codimension one foliations deserve special
attention. They use a gradient vector field with some additional properties,
which allows to remove the simply connectedness hypothesis.

In 1939 A. Fialkow, among other authors, studied the solution of the
differential equation Hessh = △h

n
g, which is equivalent to ∇h being con-

formal, [24]. He implicitly obtained a decomposition theorem, which was
explicitly stated and proved in 1965 by Y. Tashiro.

Theorem 1.2.9 ([58]). Let M be a complete Riemannian ma-
nifold and h ∈ C∞(M) a function without critical points satisfy-
ing Hessh = ag for some function a. Then M is isometric to a
warped product (a direct product if a ≡ 0) with one dimensional
base.
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This can be easily generalized to the semi-Riemannian case imposing
that ∇h is not lightlike at any point. The main tool to prove this is the
fact that integral curves of ∇h

|∇h| meet the level hypersurfaces of h for only
one value of its parameter, which implies that the map Φ : R × L → M is
a diffeomorphism, where Φ is the flow of ∇h

|∇h| and L a level hypersurface.
After that, we can obtain the metric decomposition as a warped product
using that ∇h is a closed and conformal vector field. Other remarkable
works which exploit this idea are [25, 26, 38, 54].

Remark that although we had a vector field with the same properties as
∇h, i.e. closed and conformal, we could not ensure the global decomposition
because it is not necessarily a gradient field.

The De Rham theorem not only ensures the decomposition but also the
uniqueness of the factors. For example, the euclidean space can be decom-
posed as a direct product in many ways, but the De Rham theorem ensures
that it is esesentially the only simply connected Riemannian manifold with
this property. This fact were generalized to the nonsimply connected case
by J.H. Eschenburg and E. Heintze.

Theorem 1.2.10 ([20]). Any complete connected Riemannian
manifold decomposes into a direct product M0 × M1 × . . . Mk,
where M0 is a maximal factor isometric to a euclidean space
and each Mi is indecomposable for i > 0. This decomposition is
unique up to order.

The uniqueness of more general products is still an unexplored topic
and only particular results are known such as in [56], where the authors
show that a static space with compact base can not admint other diffent
decomposition as static space.

1.3 Summary of main results

The aim of this work is to study manifolds which are locally a doubly warped
product. We suppose that this local structure is given by a suitable couple
of foliations and we focus our attention on topics as the uniqueness or the
global decomposition of the manifold. The results here presented are from
papers [28, 29, 30].

In chapter 2, we start by considering codimension one foliations given by
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a warped reference frame (see definition 2.1.2) and show that Ricci curvature
hypotheses ensure a global Generalized Robertson-Walker decomposition.

Theorem 2.2.2 (pg. 31). Let M be a complete and non-
compact Lorentzian manifold with n ≥ 3 and U a nonparallel
warped reference frame. If one of the following conditions is true

1. Ric(U) ≤ 0,

2. Ric(v) ≥ 0 for all v ∈ U⊥,

3. Ric(u) ≥ 0 for all lightlike vector u,

then M is globally a GRW space.

This results is applied to several situations in the remaining sections
of the chapter. In section 2.3 we deal with perfect fluid, giving sufficent
conditions to be a global Robertson-Walker space.

Theorem 2.3.2 (pg. 38). Let M be a noncompact spacetime
with a barotropic perfect fluid (U, ρ, η) such that

1. U is geodesic.

2. ρ > 0 is not constant, η + ρ 6= 0, dη
dρ

6= 0 and d2η
d2ρ

6= 0

3. It holds the equation of state
(

ρ′

ρ + η

)′

=
1
3

(
ρ′

ρ + η

)2

+
1
2

(ρ + 3η).

Then either M is incomplete or a global Robertson-Walker space.

If the lightlike sectional curvature is a point function over a Lorentzian
manifold, then it is known that it is locally a Robertson-Walker space,
[39]. In section 2.4, we give a curvature inequality which ensures the global
decomposition.

Theorem 2.4.6 (pg. 42). Let M be a noncompact and com-
plete Lorentzian manifold with n > 3 and U a geodesic reference
frame. Suppose that the lightlike sectional curvature KU is a
never zero point function such that 1

n−2Ric(U) < KU . Then M
is globally a Robertson-Walker space.
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Chapter 2 ends studying how far timelike umbilic hypersurfaces of a
GRW are global GRW themselves.

Theorem 2.5.2 (pg. 44). Let M be a complete Lorentzian
manifold with n > 3 and U a warped reference frame. If S is
a timelike, non compact, complete and umbilic hypersurface of
M with never zero mean curvature such that K(Π) ≥ 0 for all
degenerate plane Π tangent to S, then S is globally a GRW
space.

In chapter 3 we treat with foliations of arbitrary dimension. Concretely,
we consider what we call a doubly warped structure: two complementary,
orthogonal and umbilic foliations with closed mean curvature vector field.
Theorem 1.2.5 ensures that a complete manifold furnished with a doubly
warped structure is a quotient of a global doubly warped product. That is
why we study such quotients after introducing the helpful notion of adapted
translation and showing its relation with the holonomy in section 3.1. The
induced foliations in the quotient contitute a doubly warped structure and
they are denoted by (F1, F2). Recall that Fi(x0) is the leaf through a point
x0.

The main tool of chapter 3 is the broad generalization of theorem 1.2.7
that we prove in section 3.2.

Theorem 3.2.5 (pg. 57). Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a

quotient of a doubly warped product and fix (a0, b0) ∈ M1 ×M2.
The point x0 = p(a0, b0) has not holonomy if and only if there
exist a semi-Riemannian normal covering map

Φ : F1(x0) ×(ρ1,ρ2) F2(x0) → M,

where ρ1 ∈ C∞(F2(x0)) and ρ2 ∈ C∞(F1(x0)) are positive func-
tions.

The study of this covering map allows us to obtain a necessary and
suffient condition for a doubly warped structure to be the global doubly
warped product of two leaves.
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Corollary 3.2.8 (pg. 59). Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be

a quotient of a doubly warped product. A point x0 ∈ M has
not holonomy and F1(x0) ∩ F2(x0) = {x0} if and only if M is
isometric to the doubly warped product F1(x0) ×(ρ1,ρ2) F2(x0).

The above result generalizes theorem 1.2.8 in several senses: it deals with
doubly warped product, the regularity hypothesis is weakened and it is valid
in the semi-Riemannian setting. It is a remarkable fact that the proof of
theorem 1.2.8 can not be transferred directly to the semi-Riemannian case
because it use corollary 3 of [52], which is strongly based on the Riemannian
distance.

Theorem 3.2.5 also provide us a way to compare leaves in a doubly
warped structure.

Corollary 3.2.11 (pg. 62). Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be

a quotient of a doubly warped product.

1. If F1(x0) has not holonomy, then for any other leaf F1
there exists a normal semi-Riemannian covering map Φ :
F1(x0) → F1 with deck transformation group Hol(F1).

2. All leaves without holonomy are homothetic.

In section 3.3, we continue studying doubly warped structures via its
space of leaves, which allows us to prove an “almost” splitting theorem.

Theorem 3.3.6 (pg. 69). Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a

quotient of a doubly warped product. If F1 is a regular foliation,
then

1. The projection η : M → L1 is a fibre bundle and π1(L1, F1) =
π1(M, x)/π1(F1, x), where x ∈ F1 ∈ L1.

2. There exists an open dense subset W ⊂ M globally isome-
tric to a doubly warped product.

In section 3.4, we prove the following splitting theorem under a curvature
hypothesis.
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Theorem 3.4.3 (pg. 72). Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be

a quotient of a doubly warped product, being M1 a complete
Riemannian manifold and M2 a semi-Riemannian manifold with
0 < ν2. Suppose that F2 has not holonomy, K(Π) < 0 for all
mixed nondegenerate plane Π and λ2 has some critical point.
Then M is globally a doubly warped product.

As an application to semi-Riemannian submersion, we prove in section
3.5 the following.

Theorem 3.5.10 (pg. 82). Let M be a complete Lorentzian
manifold, B a Riemannian manifold and π : M → B a semi-
Riemannian submersion with umbilic fibres of dimension k >
1. If K(Π) < 0 for all mixed spacelike plane and the mean
curvature vector field is closed with some zero, then M is globally
a warped product.

Finally, in chapter 4 we prove some uniqueness theorems. In section
4.1 we generalize theorem 1.2.10 to the semi-Riemannian setting using a
totally different technique than that used in [20], because it is based on the
Riemannian distance. For this, we use the results developed in chapter 3,
more concretely corollary 3.2.8, to prove the following.

Theorem 4.1.3 (pg. 88). Let M = F0 × . . . × Fk be a
complete semi-Riemannian direct product with F0 a maximal
semi-euclidean factor and each Fi indecomposable for i > 0. If
M = S0 × . . . × Sk′ is another decomposition with S0 a maxi-
mal semi-euclidean factor and each Sj indecomposable for j > 0
such that Fi(p)∩Sj(p) is zero or a nondegenerate space for some
p ∈ M and all i, j, then k = k′ and, after rearranging, Fi = Si

for all i ∈ {0, . . . , k}.

After that, we turn to generalized Robertson-Walker decompositions,
proving that lightlike sectional curvature is related to the uniqueness and
that De Sitter space is the unique complete Lorentzian manifold with diffe-
rent GRW decompositions. For this, we can consider timelike, closed and
conformal vector fields because they characterize this kind of decomposition.
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Theorem 4.2.3 (pg. 93). Let M be a Lorentzian manifold
with n ≥ 3 and V a timelike, closed and conformal vector field.
If there exists another closed and conformal vector field, without
zeros and linearly independent to V at some point p ∈ M , then

1. There exists some degenerate plane Π of TpM such that
K(Π) = 0.

2. If V is not parallel and M is complete, then it is isometric
to a De Sitter space.

As a corollary, we can ensure the uniqueness of the decomposition for
Friedmann spacetimes.

Corollary 4.2.5 (pg. 97). The Friedmann models admit an
unique GRW decomposition, even locally.

The static case seems more complicated and, in contrast to the GRW
case, there are many complete manifolds with different static decomposi-
tions. Under a mild curvature hypothesis, we find that Minkowski/euclidean
and anti De Sitter/hyperbolic planes

R
2
[ε] =

(
R

2, ds2 + εdt2)
,

H
2
[ε](r) =

(
R

2, ds2 + ε cosh(rs)2dt2)
,

Ĥ
2
[ε](r) =

(
R

2, ds2 + εe2rsdt2)
,

where ε = ±1, naturally appear in the classification of these manifolds.
Observe that Ĥ

2
[1](r) is another representation of H

2
[1](r) and Ĥ

2
[−1](r) is a

piece of H
2
[−1](r).

Theorem 4.4.8 (pg. 107). Let M = L ×εf R be a static
manifold with complete base. If there exists another different
static decomposition and L has a point with positive sectional
curvature, then M is isometric to one of the following manifolds.

1. (N × R
2, gN + λ(x)2ds2 + εf(x)2dt2).

2. A warped product N ×λ H
2
[ε](r), N ×λ Ĥ

2
[ε](r) or N ×λ R

2
[ε].
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We also get the same classification as above theorem, but under Einstein
assumption, in theorem 4.4.9 (pg. 108).

Finally, as for generalized Robertson-Walker decompositions, we can
ensure the uniqueness imposing a restriction on the sign of the lightlike
sectional curvature at a point. In fact, we obtain a similar result to that of
theorem 4.2.3.

Theorem 4.4.12 (pg. 111). Let M be a static space with
n ≥ 3. If there exists a point with nonzero lightlike sectional
curvature, then M admits an unique decomposition as a static
space.



CHAPTER 2

Generalized Robertson-Walker
decompositions

In this chapter, we consider a Lorentzian manifold furnished with a warped
reference frame. This kind of vector field gives rise to a local general-
ized Robertson-Walker decomposition of the manifold, but not necessarily
a global one. We give some example of this and, after stating some proper-
ties of warped reference frames, in the section 2.1 we prove a result which
ensures the global decomposition under Ricci assumptions. Most of known
results about this topic assume that the warped reference frame is a gradi-
ent field, which greatly simplifies the problem of decomposing a manifold
because it implies that any integral curve intersects orthogonal leaves for
only one value of its parameter.

Remainder sections are devoted to apply this result to obtain global
decompositions from local ones. In section 2.3 we give sufficient conditions,
related to the energy and pressure, for a perfect fluid to be a global product.
On the other hand, if the lightlike sectional curvature is a point function,
then it is known that the manifold is a local Robertson-Walker product.
In section 2.4 we give an inequality involving Ricci and lightlike sectional
curvature which gives rise to a global Robertson-Walker decomposition in
this case. Finally, in the last section of this chapter, we study how far
photon surfaces of a local GRW, which inherit this local structures, are in
fact global generalized Robertson-Walker spaces.

21



22 2.1. Warped reference frames

2.1 Warped reference frames

We start this section stating some properties of a closed and conformal
vector field which will be used later for our purpose.

Lemma 2.1.1. Let M be a semi-Riemannian manifold and V a nonlightlike
closed and conformal vector field without zeros. Call λ = |V | and U = V

λ
.

Then

1. ∇XV = U(λ)X for all X ∈ X(M).

2. λ is constant through the orthogonal leaves of V .

3. ∇UU = 0 and ∇XU = U(λ)
λ

X for all X ∈ U⊥.

4. If h ∈ C∞(M) is constant through the orthogonal leaves of V , then
U(h) is also constant through the orthogonal leaves.

5. △λ = εU

(
U(U(λ)) + (n − 1)U(λ)2

λ

)
.

6. If L is an orthogonal leaf of V and v ∈ TL is a unitary vector, then

Ric(U) = −(n − 1)
U(U(λ))

λ
,

Ric(v) = RicL(v) − εUεv

λ

(
(n − 2ν − εv − εU)

U(λ)2

λ
+ U(U(λ))

)
,

Ric(v, U) = 0,

Ric(v + U) = RicL(v) − εUεv

λ

(
(n − 2ν − εv − εU)

U(λ)2

λ
+ (1 + εUεv(n − 1))U(U(λ))

)
.

Proof.

1. Since g(∇XV, Y ) − g(X, ∇Y V ) = 0 and g(∇XV, Y ) + g(X, ∇Y V ) =
2ag(X, Y ) for all X, Y ∈ X(M) and some function a ∈ C∞(M), it
follows that ∇XV = aX for all X ∈ X(M). If we differentiate λ2 =
εV g(V, V ) along V , then 2λV (λ) = 2aλ2 and therefore a = U(λ).

2. If X ∈ U⊥ then X(λ2) = εV X(g(V, V )) = 2εV U(λ)g(X, V ) = 0.

3. Take X ∈ X(M). We have ∇XU = X( 1
λ
)V + 1

λ
∇XV = −X(λ)

λ
U +

U(λ)
λ

X. If X = U , then both term are equal but with different sign
and if X ⊥ V , then we know that X(λ) = 0 and the result is obtained.
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4. Since h is constant through the orthogonal leaves, we have ∇h =
εUU(h)U and thus, given X ∈ U⊥, we have

X(U(h)) = X(g(∇h, U)) = g(∇X∇h, U) + g(∇h, ∇XU) =
g(∇U∇h, X) = εUg

(
U(U(h))U + U(h)∇UU, X

)
= 0.

5. Since ∇λ = εUU(λ)U , we have △λ = εUU(U(λ)) + εUU(λ)div U .
Using point 3, it follows div U = (n − 1)U(λ)

λ
and therefore △λ =

εU

(
U(U(λ)) + (n − 1)U(λ)2

λ

)
.

6. It is straightforward that the second fundamental form of L is given
by I(X, Y ) = −εUg(X, Y )U(λ)

λ
U . Take a unitary vector v ∈ TpL and

a frame {e1, . . . , en} at p with e1 = v and en = U .

Observe that given ξ ∈ X(M) with ξ = αU + X, X ⊥ U , it holds
g(∇ξU, v) = U(λ)

λ
g(ξ, v) and g(∇Uξ, v) = g(∇UX, v). Take now W a

local extension of v. Then

g(R(v, U, U), v) = g(∇v∇UU, v) − g(∇U∇W U, v) − g(∇[W,U ]U, v)

= −g(∇U
U(λ)

λ
W, v) − U(λ)

λ
g([W, U ], v)

= −U
(

U(λ)
λ

)
g(W, v) − U(λ)

λ
g(∇UW, v)

− U(λ)
λ

g(∇W U, v) +
U(λ)

λ
g(∇UW, v)

= −εvU
(

U(λ)
λ

)
− εv

(
U(λ)

λ

)2

= −εv
U(U(λ))

λ
,

and therefore it immediately follows that Ric(U) = −(n − 1)U(U(λ))
λ

.

Now, we have

Ric(v) =
n−1∑

i=2

εig(RL(ei, v, v), ei) − g(I(v, v), I(ei, ei))

+ εUg(R(v, U, U), v)

= RicL(v) −
n−1∑

i=2

εvεUεi

(
U(λ)

λ

)2

− εUεv
U(U(λ))

λ

= RicL(v) − εUεv

λ

(
(n − 2ν − εv − εU)

U(λ)2

λ
+ U(U(λ))

)
.
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Since U(λ)
λ

is constant through the orthogonal leaves of U , we have

∇XI = −εU
U(λ)

λ
∇XU · g = −εU

(
U(λ)

λ

)2
X · g for X ⊥ U and therefore

Ric(v, U) =
n−1∑

i=2

εig(R(ei, v, U), ei) = g((∇ei
I)(v, ei), U)

− g((∇vI)(ei, ei), U) = 0.

Finally, we can compute Ric(v + U) adding Ric(U) and Ric(v).

If M is a Lorentzian manifold and V a timelike, closed and conformal
vector field, then above formulaes for the Ricci curvature can be rewritten
as

Ric(v) = RicL(v) +
1
λ

(
(n − 2)

U(λ)2

λ
+ U(U(λ))

)
, (2.1)

Ric(v + U) = RicL(v) +
n − 2

λ

(
U(λ)2

λ
− U(U(λ))

)
, (2.2)

where v ∈ TL is a unitary vector.

In a GRW space (R × L, −dt2 + f(t)2g0) there are two destacable vector
fields: f∂t and ∂t. Both vector fields are timelike and closed, but they have
slightly different properties. The first is conformal whereas the second one
is unitary, orthogonally conformal and satisfies that ∇div ∂t is pointwise
proportional to ∂t, [55]. This motivates us to define the following.

Definition 2.1.2. We say that a reference frame U is a warped reference
frame if it is closed, orthogonally conformal and ∇div U is proportional to
U .

Remark 2.1.3. Observe that a warped reference frame U is geodesic, since
g(∇UU, ξ) = g(∇ξU, U) = 0 for any vector field ξ. Hence, using equation
1.1, we have (LUg) (v, w) = div U

n−1 g(v, w) for all v, w ∈ U⊥.

If V is a timelike, closed and conformal vector field in a complete and
simply connected Lorentzian manifold, then it is a gradient field and theo-
rem 1.2.9 ensures the decomposition as a GRW space (R×L, −dt2+f(t)2g0),
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where f∂t is identified with V . Exactly the same result can be obtained with
a warped reference frame, [55].

If M is not necessarily simply connected but has a warped reference
frame, we can lift it to its universal cover M̃ obtaining the decomposition
as GRW space M̃ = R × L̃. Since M̃ is simply connected also is L̃ and thus
we can ensure that a complete Lorentzian manifold with a warped reference
frame is covered by a simply connected GRW space.

Now, we are going to show that M is also covered by a nonnecessarily
simply connected GRW space with an orthogonal leaf as fibre. First we
need two preliminaries propositions. Recall that Lp denotes the orthogonal
leaf of a closed vector field through p.

Proposition 2.1.4. Let M be a Lorentzian manifold and U a complete and
closed reference frame. Then for all p ∈ M there exists a normal Lorentzian
covering map Φ : (R × Lp, −dt2 + gt) → (M, g) with Φ∗(∂t) = U , where gt

is a metric tensor on Lp for each t ∈ R and g0 = g|Lp
.

Proof. Call Φ : R × M → M the flow of U and ω its metrically equivalent
one form. Since LUω = d ◦ iUω + iU ◦ dω = 0, we have that Φ∗

t (ω) = ω and
therefore Φt is foliated, i.e. Φt(Lp) = LΦt(p) for all (t, p) ∈ R × M .

Fix p ∈ M and take the restriction Φ : R × Lp → M . If {v1, . . . , vn−1} is
a base at TxLp, then {Φ∗(t,x)(0, vi) : i = 1, . . . , n−1} is a base at TΦt(x)LΦt(p),
since Φ∗(t,x)(0, vi) = (Φt)∗x(vi) and Φt : Lp → LΦt(p) is a diffeomorphism.
Moreover, Φ∗(t,x)(∂t, 0) = UΦt(x) and therefore Φ∗(t,x) is a isomorphism be-
cause it sends a base to a base. Hence, we can conclude that Φ : R×Lp → M
is a local diffeomorphism and so Φ(R × Lp) = ∪t∈RΦt(Lp) is an open subset
of M .

If x /∈ ∪t∈RΦt(Lp) we can show as above that ∪t∈RΦt(Lx) is an open
neighborhood of x and, moreover, it is contained in the complementary
of ∪t∈RΦt(Lp). In fact, if z ∈ (∪t∈RΦt(Lp)) ∩ (∪t∈RΦt(Lx)), then there
are a ∈ Lp, b ∈ Lx and t0, t1 ∈ R with z = Φt0(a) = Φt1(b) and thus
b = Φt0−t1(a). Since Φt0−t1 is foliated, Φt0−t1 : Lp → Lx is a diffeomorphism
and so x ∈ ∪t∈RΦt(Lp), which is a contradiction. Therefore ∪t∈RΦt(Lp) is
also closed and since M is supposed connected, we have that Φ is onto.

Now, we put in R × Lp the metric Φ∗(g) = −dt2 + gt, which makes Φ a
local isometry, and show that it is a covering map. Let σ : [0, 1] → M be a
geodesic and (t0, x0) ∈ R × Lp a point such that Φ(t0, x0) = σ(0). We must
show that there exists a lift α : [0, 1] → R × Lp of σ through Φ starting at
(t0, x0), [48]. There is a geodesic α : [0, s0) → R × Lp, α(s) = (t(s), x(s)),
such that Φ ◦ α = σ and α(0) = (t0, x0) because Φ is a local isometry. If we
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suppose s0 < 1, there is a geodesic (t1(s), x1(s)) such that Φ(t1(s), x1(s)) =
σ(s) with s ∈ (s0−ε, s0+ε), and then in the open interval (s0−ε, s0) it holds
Φ(t(s), x(s)) = Φ(t1(s), x1(s)). Differentiating and taking into account that
Φ∗(t,x)

(∂t) = UΦt(x) we get for s ∈ (s0 − ε, s0) that

Φ∗(t(s),x(s))
(t′(s)∂t + x′(s)) = Φ∗(t1(s),x1(s))

(t′
1(s)∂t + x′

1(s)) ,
(t′(s) − t′

1(s)) Uσ(s) = Φ∗(t(s),x(s))
(x′(s)) − Φ∗(t1(s),x1(s))

(x′
1(s)) .

But Φ∗(t(s),x(s))
(x′(s)) − Φ∗(t1(s),x1(s))

(x′
1(s)) is orthogonal to U since Φt is

foliated. Therefore t1(s) − t(s) = c ∈ R and so it exists lims→s0 t(s) and
since x(s) = Φ−t(s)(σ(s)) it also exists lims→s0 x(s) and lims→s0 α(s). Thus
the geodesic α is extendible.

It remains to show that the group of deck transformations acts transi-
tively on the fibre. Take (t0, x0) ∈ R × Lp such that Φ(t0, x0) = Φ(0, p) = p.
Since Φ−t0 is foliated, it follows that Φ−t0(Lp) = Lp and thus the map
R×Lp → R×Lp given by (t, x) → (t+ t0, Φ−t0(x)) is a deck transformation
and takes (0, p) to (t0, x0).

The following proposition, for the case that the flow is conformal when
restricted on the leaves, is proved in a general form in [51], but it does not
include an explicit expression for the warping function.

Proposition 2.1.5. Let I ⊂ R be an open interval, L a manifold and g a
Lorentzian metric on I ×L such that the canonical foliations are orthogonal.
If U = ∂t is a warped reference frame, then g is the warped product −dt2 +
f(t)2g0 where g0 = g|L and f(t) = exp(

∫ t

0
div U(s,p)

n−1 ds), being p a fixed point
of L.

Proof. First observe that the flow of U is given by Φt(s, p) = (t + s, p) for
(s, p) ∈ I × L and t ∈ R. Fix p ≡ (0, p) ∈ I × L and v, w ∈ U⊥

p . If we call
g(t) = Φ∗

t (g)(v, w), then we have

g′(t0) =
d
dt

Φ∗
t+t0

(g)|t=0(v, w) = Φ∗
t0

(
d
dt

Φ∗
t (g)|t=0)(v, w)

= Φ∗
t0

(LUg)(v, w) = LUg
(
(Φt0)∗(v), (Φt0)∗(w)

)
.

Since (Φt0)∗(v), (Φt0)∗(w) ⊥ U and (LUg)(v, w) = 2ag(v, w) for all v, w ⊥ U ,
being a = divU

n−1 (see remark 2.1.3),

LUg
(
(Φt0)∗(v), (Φt0)∗(w)

)
= 2a(Φt0(p)) g

(
(Φt0)∗(v), (Φt0)∗(w)

)

= 2a(Φt0(p))Φ∗
t0

(g)(v, w) = 2a(Φt0(p)) g(t0).
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Thus, g(t) satisfies the differential equation g′(t) = 2a(Φt(p)) g(t). Integra-
ting we get

g(t) = exp
(

2
∫ t

0
a(Φs(p))ds

)
g(0),

or equivalently,

g((Φt)∗p(v), (Φt)∗p(w)) = exp
(

2
∫ t

0

div U(s, p)
n − 1

ds
)

g(v, w).

Now, div U is constant on L since div U is proportional to U and it is
straightforward that g = −dt2 + exp

(
2

∫ t

0
div U(s,p)

n−1 ds
)

g0, where g0 = g|L.

Applying the above two propositions we obtain what we had announced
before.

Theorem 2.1.6. Let (M, g) be a Lorentzian manifold and U a complete
warped reference frame. Then, fixed p ∈ M , there exists a normal Lorentzian
covering map map Φ : (R × Lp, −dt2 + f(t)2g0) → (M, g) with Φ∗(∂t) = U ,
where f(t) = exp

(∫ t

0
div U(Φs(p))

n−1 ds
)

and g0 = g|Lp
.

Therefore, in the hypotheses of the above theorem, M is the quotient of
the GRW space (R ×f Lp)/Γ, where Γ (the deck transformation group) is a
group of isometries which preserves the canonical foliations.

Observe that if we drop the completeness hypothesis, then we can only
ensure the local splitting around any point as a warped product −dt2 +
f(t)2g0 with U = ∂

∂t
.

Remark 2.1.7. If we take a timelike, closed and conformal vector field V ,
then its unitary U is a warped reference frame. Since div U = (n − 1)U(λ)

λ
,

where λ = |V |, in this case, the warping function of above theorem is given
by f(t) = λ(Φp(t))

λ(p) .

Remark 2.1.8. Take a deck transformation ψ ∈ Γ given by ψ(t, x) =
(A(t, x), B(t, x)). Since Φ : R ×f Lp → M is a local isometry with Φ∗(∂t) =
U , then ψ is an isometry with ψ∗(∂t) = ∂t. We see what restrictions are
imposed by these facts to the maps A and B.

We have ψ∗(∂t) = At∂t + B∗(∂t) and thus At = 1 and B∗(∂t) = 0. On
the other hand, if we take v ∈ TxLp then ψ∗(v) = g(∇A, v)∂t + B∗(v). But
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Figure 2.1: The red line is an integral curve of U and the blue one an orthogonal
leaf.

g(ψ∗(v), ∂t) = g(ψ∗(v), ψ∗(∂t)) = 0, therefore g(∇A, v) = 0. Summarizing,
ψ(t, x) = (t + k, B(x)), where k ∈ R and B : Lp → Lp is a diffeomorphism.

Moreover, using that ψ is an isometry we get −dt2 + f(t + k)2B∗(g0) =
−dt2 + f(t)2g0, which implies B∗(g0) = f(t)2

f(t+k)2 g0. Therefore f(t)
f(t+k) = c for

all t ∈ R and certain positive constant c ∈ R and B is an homothety of
factor c2.

A quotient (R ×f Lp) /Γ is not necessarily isometric to a warped product
S

1 ×f N (called twisted product in [42]) even if f is periodic, as the following
example shows.

Example 2.1.9. Take the Minkowski space (R2, −dt2+dx2), which obviusly
is a GRW space with constant (and thus periodic) warped function. Consider
Γ the group of isometries generated by ψ(t, x) = (t+1, x+1) and M = R

2/Γ.
Since ∂t is invariant under Γ, there is a complete warped reference frame
U (in fact a paralell vector field) in M which lifts to ∂t, but M is neither
a global GRW nor a product of type S

1 × L since an integral curve of U
intersects an orthogonal leaf in infinite points. See figure 2.1.

However, in the above example M decomposes as a direct product taking
the parallel vector field given by the projection of −∂x + ∂t. One can think
that we have made a wrong election of the vector field to decompose the
manifold. In the following example we only have a possible election.

Example 2.1.10. Consider the direct product (R×S
2, −dt2 +gcan) and the

group of isometries Γ generated by ψ(t, x) = (t+1, −x). Since ∂t is invariant
under Γ we can project it onto a parallel vector field U on M = (R × S

2)/Γ.
As above, M does not split because an integral curve of U intersects an
orthogonal leaf in two different points. Now, U is the unique parallel vector
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field on M because if it existed another one, then we would obtain another
decomposition of R × S

2 as a direct product, but this is imposible because of
the De Rham-Wu theorem.

On the other hand, we can construct a quotient of a GRW that is not a
global GRW even if f is nonperiodic.

Example 2.1.11. Consider M̃ = R × R
2, with the metric g = −dt2 +

et(dx2 + dy2) which is a portion of the De Sitter space S
3
1. Let Γ be the

isometry group generated by ψ(t, (x, y)) = (t + 1, e− 1
2 (x, y)). It acts proper

and discontinuously and the projection of ∂t provides us a warped reference
frame on the quotient M̃/Γ. But it is neither a global GRW nor a warped
product of type S

1 ×f L.

Under completeness, we can prove the converse to remark 2.1.7.

Proposition 2.1.12. Let M be a complete Lorentzian manifold and U a
warped reference frame. Then there exists a timelike, closed and conformal
vector field V such that U = V

|V | .

Proof. Take Φ : R ×f L → M the normal Lorentzian covering map given in
theorem 2.1.6. Since Φ∗(∂t) = U and f∂t is closed and conformal, we only
have to show that Φ∗(f∂t) is a well defined vector field on M , or equivalently,
it is preserved by any deck transformation. Let ψ : R × L → R × L, given
by ψ(t, x) = (t + k, B(x)), be any of them. If c = f(t)

f(t+k) for all t ∈ R, then
it follows that f(t + nk) = 1

cn f(t) and f(t − nk) = cnf(t) for all n ∈ N and
t ∈ [0, k].

Since M is complete, R ×f L is too and it has to hold ∞ =
∫ ∞

0 f(t)dt =∫ 0
−∞ f(t)dt, [55]. But

∫ ∞

0
f(t)dt =

∞∑

n=0

∫ (n+1)k

nk

f(t)dt =
∞∑

n=0

∫ k

0
f(t + nk)dt

=
∞∑

n=0

1
cn

∫ k

0
f(t)dt,

∫ 0

−∞
f(t)dt =

∞∑

n=0

∫ −nk

−(n+1)k
f(t)dt =

∞∑

n=0

∫ k

0
f(t + (n + 1)k)dt

=
∞∑

n=0

cn+1
∫ k

0
f(t)dt.

Hence c = 1, since
∑∞

n=0
1
cn =

∑∞
n=0 cn+1 = ∞, and thus f(t + k) = f(t) for

all t ∈ R. Now, f∂t is invariant under ψ, since ψ∗(t,x)
(f(t)∂t) = f(t + k)∂t =

f(t)∂t.
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Remark 2.1.13. Observe that the proof of the above proposition also gives
us the following fact: take Φ : R×f L → M the covering map of the theorem
2.1.6 and suppose that f is not periodic and M is complete. If we take
ψ ∈ Γ, then it has to be of the form ψ(t, x) = (t, B(x)) (see remark 2.1.8).
But by construction, x = Φ(0, x) = Φ(0, B(x)) = B(x) for all x ∈ L.
Therefore Γ = {id} and M is isometric to the GRW space R ×f L.

This shows that, under completeness, f nonperiodic is a sufficient con-
dition for M to be a global GRW space, but of course is not necessary.

2.2 Global Generalized Robertson-Walker de-
compositions

In [42] it was proved that a complete Lorentzian manifold with nonnegative
constant scalar curvature which admits a nonparallel warped reference frame
is isometric to a global GRW space. The proof follows from remark 2.1.13,
once it is shown that the hypothesis about the scalar curvature implies that
the warped function can not be periodic.

We can give another decomposition result using hypotheses about Ricci
curvature, which will be the main tool for the next sections in this chapter.
First, we need the following.

Lemma 2.2.1. Let (M, g) be a noncompact Lorentzian manifold and U a
closed reference frame with compact orthogonal leaves. Then M is isometric
to (I × L, −dt2 + gt), where I ⊂ R is an open interval and L a compact
Riemannian manifold.

Proof. Let Φ : A → M the flow of U , L an orthogonal leaf and (a, b) ⊂ R

the maximal interval of R such that (a, b) × L ⊂ A. We claim that it is
the maximal definition interval of each integral curve with initial value on
L. Indeed, suppose that Φt(p0) is defined in (a, b + δ) for some p0 ∈ L.
Since LΦb(p0) is compact, there is a η ∈ R such that (−η, η) × LΦb(p0) ⊂ A.
Moreover, Φ− η

2
: LΦb(p0) → LΦ

b− η
2

(p0) is onto (recall that Φt is foliated) and
hence it is a diffeomorphism. Therefore, for an arbitrary p ∈ L, the integral
curve Φt(p) can be defined in (a, b + η) and we obtain a contradiction.

Now, we can show as in proposition 2.1.4 that Φ : (a, b)×L → M is onto,
thus we only have to prove that it is injective. Suppose Φ(t, x) = Φ(s, y)
for (t, x), (s, y) ∈ (a, b) × L. Then Φt0(y) = x ∈ L, where t0 = s − t, and
Φt0(L) = L. Given (s, x) ∈ (a, b) × L we can write s = nt0 + t, for some
n ∈ Z and t ∈ [0, t0], and we get Φs(x) = Φt(Φnt0(x)) ∈ ∪t∈[0,t0]Φt(L).
Therefore M = ∪t∈RΦt(L) = ∪t∈[0,t0]Φt(L) and M would be compact, which
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is a contradiction. We obtain the result taking the pull-back metric in
(a, b) × L.

Theorem 2.2.2. Let M be a complete and noncompact Lorentzian manifold
with n ≥ 3 and U a nonparallel warped reference frame. If one of the
following conditions is true

1. Ric(U) ≤ 0,

2. Ric(v) ≥ 0 for all v ∈ U⊥,

3. Ric(u) ≥ 0 for all lightlike vector u,

then M is globally a GRW space.

Proof. Take V the closed and conformal vector field with U = V
|V | provided

in proposition 2.1.12. Fix p ∈ M and call f(t) = λ(Φt(p)), where, as always,
λ = |V | and Φ is the flow of U . Since Φ : R × Lp → M is onto, given a
arbitrary q ∈ M there is (t, x) ∈ R × Lp with q = Φ(t, x). On the other
hand, since Φt is foliated and U(λ) is constant through the orthogonal leaves
of U (see lemma 2.1.1), we have U(λ)q = U(λ)Φt(x) = U(λ)Φt(p) = f ′(t).
Therefore, f is not constant because if f was constant, then U(λ) ≡ 0 and
U would be parallel (lemma 2.1.1), which is a contradiction.

Suppose that Φ : R × Lp → M is not injective. Then, there is some
s0 6= 0 with Φs0(p) ∈ Lp and f is periodic, since f(t+s0) = λ(Φs0(Φt(p))) =
λ(Φt(p)) = f(t). Now we see each statement of the theorem.

1. Since 0 ≥ Ric(U) = −(n − 1)U(U(λ))
λ

, it follows that f ′′(t) ≥ 0, which
is a contradiction because f is periodic and nonconstant. Therefore,
Φ is injective and theorem 2.1.6 gives us the result.

2. First suppose △λ ≤ 0. From lemma 2.1.1, 0 ≤ U(U(λ))+(n−1)U(λ)2
λ

and if we call z(t) = ln f(t)
f(0) we get 0 ≤ z′′ + nz′2. Since f is periodic

and nonconstant there exists t0 < t1 such that z′(t0) = z′(t1) = 0 and
z′(t) 6= 0 for all t ∈ (t0, t1). Suppose that z′ > 0 in (t0, t1) (the case
z′ < 0 is similar). Then for all t ∈ (t0 +ε, t1), where ε is small enough,
we get ∫ t

t0+ε

−z′′

z′2 ≤
∫ t

t0+ε

n.

Thus 1
z′(t) ≤ n(t − t0 − ε) + 1

z′(t0+ε) and we get a contradiction taking
t → t1. In this case, theorem 2.1.6 gives us the result as in the above
point.
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Now, suppose that there exists a point where △λ > 0. We can assume
without loss of generality that this point is just p. Using formula 2.1
and the hypothesis about the Ricci curvature, we get for any unitary
vector v ∈ TLp

RicLp(v) ≥ − 1
λ

(
U(U(λ)) + (n − 1)

U(λ)2

λ

)
=

△λ
λ

.

But λ and △λ are constant through the orthogonal leaves, so it holds
RicLp(v) ≥ △λ

λ
(p) > 0 for all unitary vector v ∈ TLp. Since M is

complete, also is R ×f Lp and hence Lp, [55]. Applying the theorem
of Myers we conclude that Lp is compact, which implies that all the
orthogonal leaves are compact because Φ : R × Lp → M is onto and
Φt is foliated for all t ∈ R. Lemma 2.2.1 and proposition 2.1.5 show
that M is globally a GRW space.

3. Let h : M → R be given by h = U(U(λ)) − U(λ)2
λ

. We consider two
possibilities: there exists a point with h > 0 or h(q) ≤ 0 for all q ∈ M .

If we assume the second one, then z(t) = ln f(t)
f(0) verifies z′′ ≤ 0 and

therefore it can not be periodic and nonconstant, which is a contra-
diction. Then Φ : R × Lp → M is injective and theorem 2.1.6 gives us
the result.
Suppose now that there exists a point, for example p, with h(p) > 0.
If v ∈ TLp is a unitary vector then v + U is lightlike and formula 2.2
gives us

0 ≤ Ric(v + U) = RicLp(v) +
n − 2

λ

(
U(λ)2

λ
− U(U(λ))

)
.

Then we get (n−2)h
λ

≤ RicLp(v). But λ and h are constant through the
orthogonal leaves, lemma 2.1.1. Hence 0 < n−2

λ(p)h(p) ≤ RicLp(v) for all
unitary vector v ∈ TLp and we can conclude as above point.

If Ric(u) ≥ 0 for all timelike vector u, then it is said that the timelike
convergence condition holds (TCC) and if Ric(u) ≥ 0 for all lightlike vector
u, then it is said that the null convergence condition holds (NCC). We can
not suppose the more restrictive TCC condition (or directly Ric(U) ≥ 0) in
the above theorem because U would be parallel, [55].

A condition like div U ≥ 0 or div U ≤ 0 leads trivially to a GRW decom-
position because λ(Φt(p)), which is the warped function, would be increasing
or decreasing respectively (remark 2.1.13).
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Corollary 2.2.3. Let M be a noncompact complete Lorentzian manifold
with n ≥ 3 and V a nonparallel, timelike, closed and conformal vector field
such that |V | is bounded from above. If Riv(v) ≥ 0 for all v ∈ V ⊥ then M
is globally isometric to a GRW space R × L with L a compact Riemannian
manifold.

Proof. Following the proof of theorem 2.2.2 it is sufficient to show that there
is a point p ∈ M with △λ(p) > 0, being λ = |V |. Suppose the contrary
case, △λ ≤ 0.

The vector field V
λ

is complete since it is geodesic. Call E = λn−1V . If
γ : R → M an integral curve of V

λ
, then α(t) = γ(h(t)) is an integral curve

of E, where the function h satisfies h′(t) = λn(h(t)). Since λn is bounded,
the solution of the above differential equation is defined in the whole R and
therefore E is complete.

Now, we have

0 ≤ −△λ = U(U(λ)) + (n − 1)
U(λ)2

λ
≤ U(U(λ)) + n

U(λ)2

λ
=

1
λ2n

E(E(λ)).

If α is any integral curve of E, then the function y : R → R given by
y(t) = λ(α(t)) is bounded from above and 0 ≤ y′′, which implies that it is
constant. Therefore, λ is constant and so V is a parallel vector field, which
is a contradiction.

Corollary 2.2.4. Let (L, g0) be a noncompact and complete Riemannian
manifold and M = S

1 × L endowed with a warped product metric −dt2 +
f(t)2g0. If the NCC holds then f is constant.

Causality hypotheses are frequently used in Lorentzian geometry, besides
curvature hypotheses. Since the injectivity of Φ depends on the behavior
of some timelike curves it seems natural to impose a causality condition to
reach global decompositions. However, a hard condition like being globally
hyperbolic is not sufficient to obtain a global product, as the following
example shows.

Example 2.2.5. Take M̃ = R
2 with the metric −dt2 + f(t)2dx2, where

f(t) = 4 + sin(2πt). Call Γ the isometry group generated by Ψ(t, x) =
(t + 1, x + 1) and Π : M̃ → M = M̃/Γ the projection. The vector field
U = Π∗(f ∂

∂t
) is timelike, irrotational and conformal. The manifold M

verifies any causality condition. In fact, Π ({(t, x) : t = x}) is a Cauchy
hypersurface. But M does not split as a GRW, since any integral curve of
E = U

|U | intersects its orthogonal leaves at an infinite number of points.
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Nevertheless, we can get some information imposing causality hypothe-
sis.

Lemma 2.2.6. Let M be a complete Lorentzian manifold and U a warped
reference frame. If there exists t0 > 0 and p ∈ M such that Φt0(p) ∈ Lp,
being Φ the flow of U , then

1. Φt0 : M → M is an isometry.

2. If M is chronological, then the isometry group Ω generated by Φt0 is
isomorphic to Z and acts on M in a properly discontinuous manner.

Proof.

1. An analogous computation as in proposition 2.1.5 shows that Φt0 :
Lp → Lp is an homothety with factor exp(

∫ t0
0

div UΦs(p)

n−1 ds). If we take
V the closed and conformal vector field of proposition 2.1.12, then
div U = (n − 1)U(λ)

λ
and therefore the factor is λ(Φt0 (p)

λ(p) , which is equal
to 1 since λ is constant through Lp.

2. Suppose that the manifold is future oriented by the vector field U .
We will construct for each q ∈ M an open set Θ ∋ q such that
Φnt0(Θ) ∩ Θ = ∅ for all n ∈ Z − {0}. Recall that Φ : R ×f Lq →
M is a local isometry with f(t) = λ(Φq(t))

λ(q) , remark 2.1.7. Take k =

max{f(t)2 : t ∈ [−t0, t0]} and the ball W = B
(

q, ε
2
√

k

)
⊂ Lq, where

ε < t0 is small enough to Φ : (−ε, ε) ×f W → Θ be an isometry and
W a normal neighborhood of q.
Given Φs(z) ∈ Θ, with z = expq(v) ∈ W and s ∈ (−ε, ε), we can
construct the curves

α(t) = Φ
(ε

2
(t − 1), expq ((1 − t)v)

)
t ∈ [0, 1],

β(t) = Φ
(ε

2
t, expq (tv)

)
t ∈ [0, 1]

from Φ− ε
2
(z) to q and from q to Φ ε

2
(z) respectively. Since α′(t) =

Φ∗
(

ε
2∂t + expq∗(−v)

)
, then

g(α′(t), α′(t)) = −
(ε

2

)2
+ f 2g(v, v) < −

(ε
2

)2
+ f2

(
ε

2
√

k

)2

≤ 0,

g(α′(t), U) = −
(ε

2

)2
< 0.

Therefore α is timelike and future pointing. Analogously for β.



Chapter 2. Generalized Robertson-Walker decompositions 35

Figure 2.2: Construction of a closed timelike curve.

Suppose now that Φnt0(Θ) ∩ Θ 6= ∅, being n ∈ Z − {0}, take x, y ∈ Θ
with y = Φnt0(x) and suppose that x = Φs1(z1) and y = Φs2(z2) for
certain (s1, z1), (s2, z2) ∈ (−ε, ε) × W . We can construct the timelike
and future pointing curves α from Φ−(ε/2)(z2) to q and β from q to
Φ(ε/2)(z1) as above. These curves, together with the segment of Φt(z1)
from Φ(ε/2)(z1) to Φ−(ε/2)(z2), form a timelike and closed curve, in
contradiction with the chronology hypothesis (see figure 2.2). Thus,
Φnt0(Θ) ∩ Θ = ∅ for all n ∈ Z − {0}.

It is easy to show that Ω is a group of isometries for gR = g + 2ω ⊗ ω
too, where ω is the metrically equivalent one form to U . Since gR is
Riemannian, the existence of the above open set Θ for each q ∈ M is
sufficient to show that the action of Ω in M is properly discontinuous.

Note that we must use a Riemannian argument in the above proof be-
cause the analogous statement in Lorentzian geometry is not true.

Theorem 2.2.7. Let M be a chronological complete Lorentzian manifold
and U a nonparallel warped reference frame. Then M is a global GRW space
or there is a Lorentzian covering map Ψ : M → (S1 × N, −dt2 + f2gN).

Proof. Take the covering map Φ : R × L → M of theorem 2.1.6. If Φ
is not injective, then there is (s, p) ∈ R × L such that Φs(p) ∈ L. Take
t0 = inf{t > 0 : Φt(p) ∈ L} and y(t) = λ(Φt(p)), being λ the norm of
the vector field constructed in proposition 2.1.12. We can suppose that
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y′(0) > 0, since λ is not constant, and so there is ε > 0 such that y is
increasing in (−ε, ε). Since λ is constant through the orthogonal leaves,
then Φt(p) /∈ L for t ∈ (−ε, ε) and thus t0 > 0. Now, we show that t0 is
a minimum. Let tn be a sequence converging to t0 with Φtn(p) ∈ L for all
n ∈ N. Since U(λ) is also constant through L, then y′(tn) = y′(0) 6= 0.
Taking limit, y′(t0) = y′(0) 6= 0 and so we can conclude as above that there
is δ > 0 such that Φs(p) /∈ L for s ∈ (t0 − δ, t0 + δ), which is a contradiction
with limn→∞tn = t0.

Therefore Φt0(p) ∈ L and applying the above lemma, Ω acts on M in
a properly discontinuous manner. Now, it is easy to show that M/Ω is
isometric to a Lorentzian warped product (S1 × N, −dt2 + f 2gN), where
N = L/Ω.

2.3 Perfect Fluids

A Lorentzian four dimensional manifold M is called a perfect fluid if there
is a reference frame U (the flow vector field) and ρ, η ∈ C∞(M) (the energy
and pressure) such that

Ric = (ρ + η)ω ⊗ ω +
1
2

(ρ − η)g, (2.3)

where ω is the metrically equivalent one form to U .
A perfect fluid satisfies the energy and force equations, given respectively

by

U(ρ) = −(ρ + η)div U, (2.4)
(ρ + η)∇UU = −∇⊥η, (2.5)

where −∇⊥η is the component of ∇η orthogonal to U . When it is satified
an equation of state η = η(ρ), the perfect fluid is called barotropic.

It is well known that a Robertson-Walker spacetime R ×f L is a perfect
fluid whith flow vector field ∂t and energy and pressure given by

ρ =
3f ′2 + 3k

f 2 , (2.6)

η = −2f
f ′′ −

(
f ′

f

)2

− k
f2 , (2.7)
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being k the curvature of L. Moreover, it holds the following relations be-
tween the warped function and the pressure and energy, [48].

f ′′ = −(ρ + 3η)f
6

, (2.8)

f ′ = − ρ′f
3(ρ + η)

. (2.9)

If we differentiate equation 2.9 and replace f ′′ using equation 2.8, we get

−(ρ + 3η)f
6

= −1
3

(
ρ′

ρ + η

)′

f − ρ′

3(ρ + η)
f ′.

And using again equation 2.9,

−(ρ + 3η)f
6

= −1
3

(
ρ′

ρ + η

)′

f +
(

ρ′

3(ρ + η)

)2

f.

Rearranging, we obtain that a Robertson-Walker space satisfies the follo-
wing equation of state in the open set ρ + η 6= 0.

(
ρ′

ρ + η

)′

=
1
3

(
ρ′

ρ + η

)2

+
1
2

(ρ + 3η). (2.10)

Moreover, if dρ
dt

6= 0 we can write t as a function of ρ and replace it in
equation 2.7, obtaining η as a function of ρ. Hence, a Robertson-Walker
space is a barotropic perfect fluid in the open set dρ

dt
6= 0.

A natural question is what conditions on a perfect fluid make it a global
Robertson-Walker space, [26, 25]. We can prove that under mild conditions,
the equation of state 2.10 gives rise to a global decomposition, but first we
need the following lemma, which we include the proof for completeness
although is well known.

Lemma 2.3.1. Let M be a Lorentzian manifold, U a closed reference frame
and A : U⊥ → U⊥ the endomorphism given by A(X) = ∇XU . It holds

1. Ric(U) = −U(div U) − ||A||2.

2. 1
n−1(trace A)2 ≤ ||A||2 and the equality holds if and only if U is or-
thogonally conformal.
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Proof.

1. We will compute Ric(U) at a point p. Take {E1, ..., En} a frame field
with ∇Ei

Ej(p) = 0 and En(p) = U(p), [48]. Since U is geodesic,

Ric(U) =
n−1∑

i=1

g(R(Ei, U, U), Ei) =
n−1∑

i=1

−g(∇U∇Ei
U, Ei) − g(∇[Ei,U ]U, Ei)

=
n−1∑

i=1

−U(g(∇Ei
U, Ei)) + g(∇Ei

U, ∇UEi) − g(∇∇Ei
UU, Ei)

+ g(∇∇UEi
U, Ei) =

n−1∑

i=1

−U(g(∇Ei
U, Ei)) − g(∇Ei

U, ∇Ei
U)

= −U(div U) − ||A||2.

2. Since the metric in U⊥ is definite positive and A is an adjoint endo-
morphism, it is diagonalizable. If a1, . . . , an−1 are its eigenvalues, then
||A||2 =

∑n−1
i=1 a2

i and (trace A)2 = (
∑n−1

i=1 ai)2.

Using the Cauchy-Schwarz inequality in R
n−1 with the vectors (a1, . . . , an−1)

and (1, . . . , 1) we get that

1
n − 1

(
n−1∑

i=1

ai

)2

≤
n−1∑

i=1

a2
i ,

and the equality holds if and only if a1 = . . . = an−1, i.e., A = a · id.
But this is equivalent to U being orthogonally conformal.

Theorem 2.3.2. Let M be a (four dimensional) noncompact spacetime with
a barotropic perfect fluid (U, ρ, η) such that

1. U is geodesic.

2. ρ > 0 is not constant, η + ρ 6= 0, dη
dρ

6= 0 and d2η
d2ρ

6= 0

3. The equation of state 2.10 holds.

Then either M is incomplete or a global Robertson-Walker space.
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Proof. We show that U is closed, that is, dω = 0. From the force equation
2.4 we have g(X, ∇η) = 0 for all X ∈ U⊥ and thus dη = h ω, being h certain
function. Moreover,

−X(h) = X(g(U, ∇η)) = g(∇XU, ∇η) + g(U, ∇X∇η)
= hg(∇XU, U) + g(X, ∇U∇η) = g(X, ∇UhU) = 0.

Thus, dh is proportional to ω, and taking exterior derivative in dη = h ω
we get 0 = dh ∧ ω + h dω = h dω. Therefore dω = 0 except, maybe, at the
zeros of h, which coincide with the critical points of η.

Take p ∈ M with ∇ηp = 0. Call η(t) = η(γ(t)) and ρ(t) = ρ(γ(t))
where γ is the integral curve of U with γ(0) = p. Since the perfect fluid is
barotropic, η′ = dη

dρ
ρ′ and then η′ = 0 if and only if ρ′ = 0. If ρ′(t) = 0 for

all t ∈ (−ε, ε) then ρ + 3η = 0 in contradiction with d2η
d2ρ

6= 0. Thus there
is a sequence tn converging to 0 with ρ′(tn) 6= 0 and so dωγ(tn) = 0. Taking
limit, dωp = 0.

Now, consider the endomorphism A : U⊥ → U⊥ given by A(X) = ∇XU .
From lemma 2.3.1 and the energy equation 2.8, ||A||2 =

(
ρ′

ρ+η

)′
− Ric(U).

But equation 2.5 gives us Ric(U) = −1
2(ρ + 3η). So we can use the state

equation 2.10 to write

‖A‖2 =
1
3

(
ρ′

ρ + η

)2

=
1
3

(div U)2 =
1
3

(trace A)2.

Using lemma 2.3.1, U is orthogonally conformal. Since U is geodesic, the
force equation implies that η is constant through the orthogonal leaves and
so also is ρ because the perfect fluid is barotropic and dη

dρ
6= 0. Therefore,

we can conclude from the energy equation that ∇div U is proportional to
U . Summarizing, U is a warped reference frame. If U were parallel then M
would be locally a direct product, which implies that ρ is constant, [48].

Since ρ+η 6= 0, there are two possibilities: ρ+η > 0 or ρ+η < 0. Using
equation 2.3, the first possibility implies Ric(u) > 0 for all lighlike vector u ∈
TM and we can apply theorem 2.2.2(3). The second one implies Ric(v) > 0
for all vector v ∈ U⊥, which allows us to apply theorem 2.2.2(2). In any
case, the global splitting as a GRW space is assured and it is straightforward
that a four dimensional GRW perfect fluid is in fact a RW space.

Observe that only the hypotheses of point 2 in the above theorem are
nonnecessary for a perfect fluid to be a global Robertson-Walker spacetime.
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2.4 Lightlike sectional curvature

Let U be a geodesic reference frame in a Lorentzian manifold M with n ≥ 3.
If there is ̺ ∈ C∞(M) such that KU(Π) = ̺(p) for all degenerate plane
Π ≤ TpM , then it is said that the lightlike sectional curvature is a point
function.

In [32, 39] the authors proved that if moreover f does not have any
zero, U is geodesic and n > 3, then U is a warped reference frame and the
orthogonal leaves have constant curvature. Using this and theorem 2.1.6 we
can conclude the following.

Theorem 2.4.1. Let M be a complete Lorentzian manifold with n > 3 and
U a geodesic reference frame such that KU is a never zero point function.
Then M is covered by a Robertson-Walker space R × L.

We will obtain conditions on the lightlike sectional curvature which en-
sure the global decomposition of M under the conditions of the above the-
orem, but we need some preliminar lemmas. We start giving a relation
between lightlike sectional curvature and Ricci curvature.

Lemma 2.4.2. Let M be a Lorentzian manifold and U a reference frame.
If u is a lightlike vector with g(u, U) = 1, then

Ric(u) =
n−2∑

i=1

KU(span(u, ei)),

where {e1, ..., en−2} is an orthonormal basis of u⊥ ∩ U⊥.

Proof. If we call en−1 = u+U , then {e1, . . . , en−2, en−1, U} is a frame. Thus

Ric(u) =
n−2∑

i=1

g(R(ei, u, u), ei) + g(R(en−1, u, u), en−1) − g(R(U, u, u), U).

But it holds g(R(en−1, u, u), en−1) = g(R(U, u, u), U) and g(R(ei, u, u), ei) =
KU(span(u, ei)), so we get the lemma.

In a GRW space we can give an explicit formula for the lightlike sectional
cuvature respect to the reference frame ∂t.

Lemma 2.4.3. Let M = R ×f L be a GRW space. Take v ⊥ w ∈ TL
unitary vectors, u = −∂t + w and Π = span(u, v). Then

K∂t
(Π) =

KL(span(v, w)) + f ′2 − f ′′f
f 2 .

Moreover, if L has constant sectional curvature then Ric(u) = (n−2)K∂t
(Π).
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Proof. We can suppose that v is unitary. Then

K∂t
(Π) = g(R(v, u, u), v) = g(R(v, ∂t, ∂t), v) − 2g(R(v, ∂t, w), v)

+ g(R(v, w, w), v).

Using the formulas for the curvature tensor of a warped product, [48]

g(R(v, ∂t, ∂t), v) = −Hessf (∂t, ∂t) = −f ′′

f
,

g(R(v, ∂t, w), v) = 0,

g(R(v, w, w), v) = g(RL(v, w, w), v) +
f ′2

f 2 =
KL(span(v, w)) + f ′2

f2 ,

and thus we obtain the formula for K∂t .
If L has constant sectional curvature, then K∂t

is a point function and
the above lemma gives us Ric(u) = (n − 2)K∂t

(Π).

Curvature and completeness can be related as follows.

Lemma 2.4.4. Let M = R×f L be a GRW space. If M is lightlike complete
and Ric(u) > 0 for all lightlike vector u, then RicL(v) > 0 for all v ∈ TL.

Proof. Suppose there is v ∈ TL a unitary vector such that RicL(v) ≤ 0.
Using the formulas of [48],

0 < Ric(∂t + v) = RicL(v) +
n − 2

f

(
f ′2

f
− f ′′

)
.

If we call y = ln f , then y′′ = f ′′f−f ′2

f2 < 0 and therefore y(t) ≤ y′(0)t +
y(0) for all t ∈ R. Since y can not be constant, we can assume without loss
of generality that y′(0) 6= 0. Suppose for example that y′(0) > 0 (the case
y′(0) < 0 is analogue). Then

∫ 0

−∞
f ≤

∫ 0

−∞
ey′(0)t+y(0) < ∞

and using [55] we conclude that M is lightlike incomplete.

Proposition 2.4.5. Let M be a noncompact and complete Lorentzian ma-
nifold with n > 3 and U a geodesic reference frame. If the lightlike sectional
curvature KU is a positive point function, then M is globally a Robertson-
Walker space R × L where L has positive constant sectional curvature.
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Proof. We know that M is covered by a Robertson-Walker space R × L.
From lemma 2.4.3 we have that Ric(u) > 0 for all lightlike vector u and using
lemma 2.4.4, L has positive constant curvature. Therefore, L is compact,
which implies that orthogonal leaves of U too, and we can apply lemma
2.2.1.

We are already able to establish the following theorem.

Theorem 2.4.6. Let M be a noncompact and complete Lorentzian manifold
with n > 3 and U a geodesic reference frame. Suppose that the lightlike
sectional curvature KU is a never zero point function such that 1

n−2Ric(U) <
KU . Then M is globally a Robertson-Walker space.

Proof. If U were parallel then Ric(U) = 0 and the above proposition give us
the desired result. Therefore, we can suppose that U is a nonparallel warped
reference frame. Take v, w ∈ U⊥ two unitary and orthogonal vectors and
the degenerate plane Π = span(−U + w, v). Since M is locally a RW space,
we can apply lemma 2.4.3 and we get Ric(−U + w) = (n − 2)KU(Π). But
Ric(−U + w) = Ric(U) + Ric(w) and therefore Ric(w) > 0 for all w ∈ U⊥.
Now, we apply theorem 2.2.2(2).

2.5 Timelike hypersurfaces of a local GRW
space

Spacelike hypersurfaces are widely studied in General Relativity due to their
role as initial data in the Cauchy problem. On the other hand, if a time-
like hypersurface, which is interpreted as the history of a (n-2)-dimensional
spacelike submanifold, is umbilic then it is called a photon hypersurface,
[16]. In this section, we show that in a local GRW space, photon hypersur-
faces are global GRW spaces under certain curvature condition.

Recall that if S is a timelike submanifold of M , then KS means the
lightlike sectional curvature computed respect to the curvature tensor of S,
which may differ from K. However, if S is umbilic, then their sign are the
same.

Lemma 2.5.1. Let M be a Lorentzian manifold, U a reference frame and
S a k−dimensional timelike and umbilic submanifold.
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1. If U = ξ + X, where ξ ∈ X(S) and X ∈ X(S)⊥, and we call E =
1√

1+g(X,X)
ξ, then

KU(Π) =
1

1 + g(X, X)
KS

E(Π)

for all degenerate plane Π tangent to S.

2. If u ∈ TS is a lightlike vector with g(u, U) = 1, then

RicS(u) =
k−2∑

i=1

KU(span(u, ei)),

where {e1, ..., ek−2} is an orthonormal basis of u⊥ ∩ U⊥ ∩ TS.

Proof.

1. Suppose Π = span(u, v), where v ∈ TS is a unitary vector and u ∈ TS
is a lightlike vector with g(u, U) = 1. Then

KU(Π) = g(R(v, u, u), v) = g(RS(v, u, u), v)
+g(I(v, v), I(u, u)) − g(I(v, u), I(v, u)).

Since S is umbilic, we have I(u, u) = I(u, v) = 0. On the other hand,
u′ =

√
1 + g(X, X)u is a lightlike vector with g(u′, E) = 1 and thus

KU(Π) = 1
1+g(X,X)g(RS(v, u′, u′), v) = 1

1+g(X,X)KS
E(Π).

2. Using lemma 2.4.2, we have RicS(u′) =
∑k−2

i=1 KS
E(span(u′, ei)), where

{e1, ..., ek−2} is an orthonormal basis of u⊥ ∩ U⊥ ∩ TS. But then

RicS(u) =
1

1 + g(X, X)
RicS(u′) =

1
1 + g(X, X)

k−2∑

i=1

KS
E(span(u′, ei))

=
k−2∑

i=1

KU(span(u, ei)).

If the lightlike sectional curvature is positive for degenerate tangent
planes to S, then we can obtain a global decomposition. Observe that
in the following theorem we can not apply proposition 2.4.5 becuase K has
not to be a point function.
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Theorem 2.5.2. Let M be a complete Lorentzian manifold with n > 3
and U a warped reference frame. If S is a timelike, noncompact, complete
and umbilic hypersurface of M with never zero mean curvature such that
K(Π) ≥ 0 for all degenerate plane Π tangent to S, then S is globally a
GRW space.

Proof. Take V closed and conformal with U = V
|V | , (proposition 2.1.12).

Suppose ∇V = a · id and I(X, Y ) = g(X, Y )N for all X, Y ∈ X(S), where
N is the mean curvature vector field of S. Decompose V = αξ + W , where
ξ = N

|N | and W ∈ X(S). Given X ∈ X(S),

aX = ∇XV = X(α)ξ + α∇Xξ + ∇ξW,

and thus ∇S
XW = aX + α∇Xξ. If Y ∈ X(S), then we have g(∇Xξ, Y ) =

−g(ξ, ∇XY ) = −|N |g(X, Y ) and therefore

∇Xξ = −|N |X. (2.11)

Then, we conclude that ∇S
XW = (a + g(V, N))X for all X ∈ X(S), i.e., W

is closed and conformal in S.
Suppose that W is parallel in S. Then a = −g(N, V ) and g(W, W ) is

constant through S, which we call c. Take the function h : S → R given
by h(p) = g(V, V ). If X ∈ X(S) with X ⊥ W , then X(h) = 2g(∇XV, V ) =
2ag(X, V ) = 0. Therefore, h is constant through the orthogonal leaves of
W . Now, we compute the derivatives of h along W .

W (h) = 2g(∇W V, V ) = 2ag(W, V ) = 2ac,
W (W (h)) = 2cW (a) = −2cW (g(V, N)) = −2c (g(∇W V, N) + g(V, ∇W N))

= −2cg(V, ∇W N).

But using formula 2.11,

g(V, ∇W N) = g(V, ∇W |N |ξ) = W (|N |)g(V, ξ) − g(N, N)g(W, V )

=
W (|N |

|N | g(V, N) − cg(N, N) = a
W (|N |)

|N | − cg(N, N)

=
W (h)W (|N |)

2c|N | − cg(N, N).

Take γ an integral curve of W and call h(t) = h(γ(t)). If t0 ∈ R is
a critical point of h, then h′′(t0) = 2c2g(N, N) > 0 and hence h can not
be periodic. This implies that γ intersect each orthogonal leaf only for
one value of its parameter. Applying theorem 2.1.6, S is globally a direct
product.

Suppose now that W is not parallel. Lemma 2.5.1(2) shows that S
satisfies the NCC condition, and theorem 2.2.2(3) finishes the proof.
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Corollary 2.5.3. Let M be a complete Lorentzian manifold with n > 3 and
U a parallel reference frame. If K(Π) ≥ 0 for all plane Π ∈ U⊥, then any
timelike, noncompact, complete and umbilic hypersurface of M with never
zero mean curvature is globally a GRW space.

Proof. Locally, M is a direct product and so, if Π = span(−U + v, w) is
a degenerate plane tangent to the hypersurface, from lemma 2.4.3 we have
KU(Π) = K(span(v, w)) ≥ 0 and we can apply the above theorem.

Example 2.5.4. From this corollary we can deduce the well known fact
that the anti De Sitter space H

n
1 (r) = {p ∈ R

n+1
2 : 〈p, p〉 = −r2} can not

be immersed completely in Minkowski space R
n+1
1 . In fact, if S ⊂ R

n+1
1 is

a complete Lorentzian manifold with constant negative curvature, then S is
umbilic, [48]. On the other hand, the Gauss equation implies that it has
never zero mean curvature and above corollary ensures that S is globally a
GRW space. But a GRW space of constant negative curvature is incomplete,
[55].

If U is a reference frame on M , we can define the hyperbolic angle
θ ∈ [0, ∞) between U and a timelike hypersurface S as the hyperbolic angle
between U and the projection of U in S. More explicitly, if E is the normal
unitary vector field to S and U = αE +W, W ∈ E⊥, then θ is characterized
by

cosh θ =
−g(U, W )

√
−g(W, W )

.

In general, it is a difficult question to check the completeness of a timelike
hypersurface S of a complete Lorentzian manifold M . In the case of a
umbilic hypersurfaces of a GRW space we can give a simple criterium.

Proposition 2.5.5. Let R ×f L be a complete GRW space. If S is a time-
like, closed (as a subset of R × L) and umbilic hypersurface such that the
hyperbolic angle between ∂

∂t
and S is bounded, then S is complete.

Proof. Call E the unit normal to S and V = f∂t. If V = αE + W , where
W ∈ X(S), then we already know that W is closed and conformal (see the
proof of theorem 2.5.2) and thus U = W

|W | is a warped reference frame in S.
The Riemannian metric gR = g + 2dt2 = dt2 + f 2g0 is complete, [48, 55],
and we have gR(U, U) = −1 + 2g(∂t, U)2 = −1 + 2 cosh(θ)2, where θ is the
hyperbolic angle between ∂t and S. Therefore gR(U, U) is bounded and
thus it is a complete vector field. Using theorem 2.1.6, there is a Lorentzian
covering R ×h Q → S, where h(s) = |W |γ(s)

|W |γ(0)
and γ is an integral curve of U
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(remark 2.1.7). We can assume without loss of generality that γ(0) = (0, q)
and |W |γ(0) = 1. Since S is umbilic, its lightlike geodesics are geodesics
of R ×f L and thus S is lightlike complete because it is closed. Therefore
R ×h Q is also lightlike complete and so Q is complete. If we show that

∫ ∞

0

h(s)
√

1 + h(s)2
ds =

∫ 0

−∞

h(s)
√

1 + h(s)2
ds = ∞,

then R ×h Q is complete and therefore also is S, [55].
Let T : R × L → R be the canonical projection and consider the diffeo-

morphism ρ = T ◦γ : R → R. Since g(W, W )γ(s) ≤ g(V, V )γ(s) = −(f ◦ρ(s))2

it follows that ∫ ∞

0

f ◦ ρ
√

1 + (f ◦ ρ)2
ds ≤

∫ ∞

0

h√
1 + h2

ds,

but d
ds

ρ = −g( ∂
∂t

, U) = cosh θ ≤ c, where c is certain constant, so

∞ =
∫ ∞

0

f(t)
√

1 + f(t)2
dt ≤ c

∫ ∞

0

f ◦ ρ(s)
√

1 + (f ◦ ρ(s))2
ds.

In an analogous way we can check
∫ 0

−∞
h(s)√

1+h(s)2
ds = ∞.

Example 2.5.6. Take M = S
1 ×R×S

2 with the metric g = −dt2 +f(t)2g0,
where f(t) = 2 + cos t, g0 = dx2 + 1

2gS and gS is the canonical metric
in S

2. Take the universal covering ̺ : M̃ → M , F : M̃ → R given by
F (t, x, p) = x−

∫ t

0
1

2f(s)ds and S̃ = F −1(0). It follows that ∇F = 1
2f

∂
∂t

+ 1
f2

∂
∂x

and (∇F )⊥ = TS
2 ⊕ span( ∂

∂t
+ 1

2f
∂
∂x

). Now, a direct computation gives us
that HessF (X, Y ) = f ′

2f2 g(X, Y ) for all X, Y ∈ ∇F ⊥. Hence S̃ is a timelike,
closed, noncompact and umbilic hypersurface of M̃ . Since the hyperbolic
angle between S̃ and ∂

∂t
is constant, it follows that S̃ is complete.

Take now Π a degenerate plane tangent to S̃. Suppose Π = span(u, v)
where g(u, u) = g(u, v) = g( ∂

∂t
, v) = 0 and g(v, v) = g(u, ∂

∂t
) = 1. Then

u = − ∂
∂t

+ w, where w is unitary and orthogonal to ∂
∂t

and v.
Since Π is tangent to S̃, the structure of (∇F )⊥ implies that v ∈ TS

2 and
the relation g(u, ∇F ) = 0 that w = − 1

2f
∂
∂x

+X, where X ∈ TS
2. Now, if we

denote K0 the sectional curvature of (R × S
2, g0), then K0(span(v, w)) = 3

2
and therefore lemma 2.4.3 give us

K∂t
(Π) =

K0(span(v, w)) + f ′2 − f ′′f
f 2 =

5
2 + 2 cos(t)

f2 > 0.

The hypersurface S = ̺(S̃) is not compact and applying theorem 2.5.2 it is
a global GRW space.



CHAPTER 3

Doubly warped structures

In this chapter we study global properties of a manifold which is locally a
doubly warped product in a sense that will be precised in the first section,
where we define the notion of doubly warped structure and the adapted
translation to it. This translation is equivalent to the linear holonomy of a
leaf and it will allow us to handle the usual holonomy in a much easier way,
since in a doubly warped structure the holonomy and the linear holonomy
are the same.

Under completeness hypothesis, a manifold furnished with a doubly
warped structure is the quotient of a doubly warped product. That is why
we focus on studying these quotients from section 3.2 onwards. We prove
that they are always covered by the doubly warped product of two suit-
able leaves, which allows us to obtain some important consequences. One
of them is that the necessary and sufficent condition for a doubly warped
structure to be a global product is the existence of two leaves without holon-
omy which intersect each other at only one point. Moreover, any leaf is the
quotient of a leaf without holonomy, being the deck transformation group
the holonomy group of the leaf.

In section 3.3, we study the space of leaves, proving similar results to
those known for Riemannian bundle-like foliations and an almost splitting
theorem. In section 3.4 we show a global decomposition result involving sec-
tional curvature which is applied in section 3.5 to obtain sufficient conditions
for a semi-Riemannian submersion with umbilic fibres to be the canonical
projection onto the base of a global warped product.

47



48 3.1. Preliminaries

3.1 Preliminaries

We start with a condition for a doubly twisted to be a doubly warped
product. Recall that, as it was said in page 7, the mean curvature vector
fields of the canonical foliations in a doubly twisted product M1 ×(λ1,λ2) M2
are Ni = P3−i(−∇ ln λi) and, on the other hand, the lift of a vector field to
M1 × M2 is denoted by the same letter.

Lemma 3.1.1. Let M1 ×(λ1,λ2) M2 be a doubly twisted product. It is a
doubly warped product if and only if the mean curvature vector fields of the
canonical foliations are closed.

Proof. Suppose dω1 = 0, where ω1 is the metrically equivalent one form to
N1. If X ∈ X(M1) and V ∈ X(M2), then X(V (ln λ1)) = −X(ω1(V )) =
−dω1(X, V ) = 0. Thus there are functions f1 ∈ C∞(M1) and h1 ∈ C∞(M2)
such that λ1(x, y) = f1(x)h1(y) for all (x, y) ∈ M1 × M2. Analogously,
λ2(x, y) = f2(x)h2(y) for certain functions f2 ∈ C∞(M1) and h2 ∈ C∞(M2).
Hence, taking conformal metrics if it were necessary, M1 ×(λ1,λ2) M2 can be
expressed as a doubly warped product.

Conversely, if M1 ×(λ1,λ2) M2 is a doubly warped product, then λ1 only
depends on M2 and thus N2 = P2(−∇ ln λ1) = −∇ ln λ1, which obviously
is closed. Analogously for N1.

In [23] the authors gave a condition for a twisted product to be a warped
product in term of the Ricci curvature.

We want to generalize the concept of doubly twisted or doubly warped
product to manifolds which are not necessarily a topological product. For
this, we give the following definition.

Definition 3.1.2. Two complementary, orthogonal and umbilic foliations in
a semi-Riemannian manifold is called a doubly twisted structure. Moreover,
if the mean curvature vectors of the foliations are closed, then it is called a
doubly warped structure. We say that it is a warped structure if one mean
curvature vector is closed and the other one is zero and, finally, if both mean
curvature vectors are zero, it is called a direct product structure.

In [53] it is given the following definition. Take M , B and F semi-
Riemannian manifolds and Π : M → B a fibre bundle with fibre F . Suppose
that there is a function λ : B → R

+ such that (Π−1(Ui), g) → (Ui × F, gB +
λ2gF ) are isometries, being {Ui : i ∈ I} trivializing open sets of B. Then it
is said that M has a warped structure.
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This definition is more restrictive than that given here. In fact, using
that M is locally isometric to a warped product, it can be easily shown
that fibres are umbilic with closed mean curvature and that orthogonal
distribution to the fibre is integrable and geodesic. Moreover, the foliation
induced by the fibres is regular, which does not need to hold in definition
3.1.2.

In the remainder of this chapter, (F1, F2) will be a doubly twisted or
warped structure, Ni the mean curvature vector field of Fi and ωi the mean
curvature form. Recall that the leaf of Fi through x ∈ M is denoted by
Fi(x) and Fi(x) will be the tangent space of Fi(x) at the point x.

In a warped structure, if N1 = 0 then F2 is spherical. Indeed, since N2
is closed, given X ∈ F1 and V ∈ F1 we have g(∇V N2, X) = g(V, ∇XN2) =
g (V, I1(X, N2)) = 0. Trivially, both foliations of a direct product structure
are geodesic.

Remark 3.1.3. Of course, canonical foliations of a doubly twisted (warped)
product constitute a doubly twisted (warped) structure. Conversely, if M has
a doubly twisted (warped) structure, then we can take around any point an
adapted chart to both foliations ([40, pg. 182]) and use lemma 3.1.1 and
proposition 1.2.4 to show that M is locally isometric to a doubly twisted
(warped) product.

In the doubly warped structure case, the condition on the mean curvature
vector fields in theorem 1.2.5 can be easily checked. So, if the leaves of one
of the foliations are complete we can apply this theorem to obtain that M is
a quotient of a global doubly warped product.

We introduce now a kind of translation which will be very useful in a
doubly warped structure. Given a curve α : [0, 1] → M we call αt : [0, t] →
M , 0 ≤ t ≤ 1, its restriction.

Definition 3.1.4. Let M be a semi-Riemannian manifold with F1 and F2
two orthogonal and complementary foliations. Take x ∈ M , v ∈ F2(x) and
α : [0, 1] → F1(x) a curve with α(0) = x. We define the adapted translation
of v along αt as Aαt

(v) = exp
(

−
∫

αt
ω2

)
W (t), where W is the parallel

translation normal to F1 of v along α.

In the same way we can define the adapted translation of a vector of
F1(x) along a curve in F2(x). Observe that |Aαt

(v)| = |v| exp
(

−
∫

αt
ω2

)
.
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Obviously, in the case of a direct product metric, this translation is merely
the parallel translation. We state some properties about it.

Lemma 3.1.5. Let M = M1 × M2 be a semi-Riemannian manifold such
that the canonical foliations constitute a doubly twisted structure. Take α :
[0, 1] → M1 a curve with α(0) = a and vb ∈ TbM2. The adapted translation
of (0a, vb) along the curve γ(t) = (α(t), b) is Aγt

(0a, vb) = (0α(t), vb).

Proof. Take X, Y ∈ X(M1) and V, W ∈ X(M2). Since [X, V ] = 0 we have

g(∇XV, W ) = g(∇V X, W ) = −g(X, ∇V W ) = −g(V, W )g(X, N2),

and analogously g(∇XV, Y ) = −g(V, N1)g(X, Y ). Therefore, it follows that
∇XV = −ω1(V )X − ω2(X)V for all X ∈ X(M1) and V ∈ X(M2).

Take V (t) = (0α(t), vb) and W (t) = λ(t)V (t), where λ(t) = exp
(∫

γt
ω2

)
.

We only have to check that W (t) is the normal parallel translation of (0a, vb)
along γ. But this is an immediate consequence of

DW
dt

= λ′V + λ
(
−ω1(V )γ′ − ω2(γ′)V

)
= −λω1(V )γ′.

In a doubly twisted structure, the adapted translation is related with
the holonomy maps via their derivative.

Lemma 3.1.6. Let M be a semi-Riemannian manifold with (F1, F2) a dou-
bly twisted structure, x0 ∈ M and α : [0, 1] → F1(x0) a loop at x0. The
holonomy map f ∈ Hol(F1(x0)) associated to α is a conformal diffeomor-
phism and f∗x0

(v) = Aα(v) for all v ∈ F2(x0).

Proof. It is sufficient to show it locally. By remark 3.1.3, we can take an
open set of x0 isometric to a doubly twisted product U1 ×(λ1,λ2) U2 where Ui

is an open set of Fi(x0) with x0 ∈ Ui. If α(t) ∈ U1 for 0 ≤ t ≤ t0, then the
holonomy map associated to this arc is f : {x0} × U2 → {α(t0)} × U2 given
by f(x0, y) = (α(t0), y). Clearly, this map is a conformal diffeomorphism
with factor λ2

2(α(t0),y)
λ2
2(x0,y) and f∗x0

(0x0 , vx0) = (0α(t0), vx0) = Aαt0
(vx0).

Remark 3.1.7. Observe that a holonomy map in a doubly warped structure
is an homothety instead of a conformal diffeomorphism and therefore it is
determined by its derivative at a point. In other words, the linear holonomy
determines the holonomy. Therefore, if M is a doubly warped structure,
then a leaf F1 has not holonomy if and only if for any loop α in F1 it holds
Aα = id.
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Using the adapted translation, we can give a simple proof of proposition
1.2.4.

Proposition 3.1.8. Let (M1 ×M2, g) be a semi-Riemannian manifold such
that the canonical foliations constitute a doubly twisted structure. Fix (a, b) ∈
M1 ×M2 and call g1 = g|M1×{b} and g2 = g|{a}×M2. Then there are functions
λ1, λ2 ∈ C∞(M1 × M2) such that g = λ2

1g1 + λ2
2g2.

Moreover, if the canonical foliations constitute a doubly warped struc-
ture, then the above metric is a doubly warped product.

Proof. Take (x, y) ∈ M1×M2 and α : [0, 1] → M1 a curve with α(0) = a and
α(1) = x. We define λ2(x, y) = exp

(
−

∫
γ

ω2

)
, where γ(t) = (α(t), y). We

show that λ2 is independent of the choice of γ. If (0a, vy) is a nonlightlike
vector at (a, y) we know from lemma 3.1.5 that Aγ(0a, vy) = (0x, vy) and
then |(0x, vy)| = exp

(
−

∫
γ

ω2

)
|(0a, vy)|. Since |(0x, vy)| and |(0a, vy)| are

independent of the curve γ, it follows that λ2 is too. Moreover, we have
shown that

g
(
(0x, vy), (0x, vy)

)
= λ2

2(x, y)g2
(
(0a, vy), (0a, vy)

)

for all nonlightlike vector (0x, vy). We can define λ1(x, y) in the same way,
obtaining that

g
(
(ux, 0y), (ux, 0y)

)
= λ2

1(x, y)g1
(
(ux, 0b), (ux, 0b)

)

for all nonlightlike vector (ux, 0y). From this and the fact that canonical
foliations are orthogonal, we conclude that g = λ2

1g1 + λ2
2g2.

If we have a doubly warped structure, then we apply lemma 3.1.1.

We finish this section relating two doubly twisted structure via a local
isometry.

Lemma 3.1.9. Let M and M be two semi-Riemannian manifold with a
doubly twisted structure (F1, F2) and (F1, F2) respectively. Take ϕ : M →
M a local isometry which preserves the doubly twisted structure, that is,
ϕ∗x

(F i(x)) = Fi(ϕ(x)) for all x ∈ M and i = 1, 2. Then ϕ also preserves

1. the leaves, ϕ(F i(x)) ⊂ Fi(ϕ(x)).

2. the mean curvature vector fields, ϕ∗x(N i(x)) = Ni(ϕ(x)).

3. the mean curvature forms, ϕ∗(ωi) = ωi.
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4. the adapted translation, that is, if γ : [0, 1] → F 1(x) is a curve with
γ(0) = x and v ∈ F2(x), then Aϕ◦γt

(ϕ∗x
(v)) = ϕ∗γ(t)

(Aγt
(v)) and

analogously for a curve in F 2(x).

Proof.

1. It is immediate.

2. Take X, Y ∈ F1 and call X = ϕ∗(X) and Y = ϕ∗(Y ) in a suit-
able open set. Since ϕ is a local isometry, g(X, Y )N1 = P2(∇XY ) =
ϕ∗(P 2(∇XY )) = g(X, Y )ϕ∗(N1). Hence N1 = ϕ∗(N1) and analo-
gously for N2.

3. Immediate from point 2.

4. Take W (t) the parallel translation of v normal to F1 along γ. Since
ϕ is a local isometry which preserves the foliations, ϕ∗(W (t)) is the
normal parallel translation of ϕ∗(v) along ϕ◦γ. Using point 3,

∫
γt

ω2 =∫
ϕ◦γt

ω2 and therefore Aϕ◦γt
(ϕ∗x

(v)) = ϕ∗γ(t)
(Aγt

(v)).

3.2 Quotient of a doubly warped product

Since, under completeness hypothesis, a doubly warped structure is a quo-
tient of a doubly warped product (see remark 3.1.3), we focus our attention
on this case. From now on, M1 ×(λ1,λ2) M2 will be a doubly warped product
and Γ a subgroup of isometries such that:

1. It acts on M1 × M2 in a properly discontinuous manner.

2. Any isometry of Γ preserves the canonical foliations.

This implies that if ϕ ∈ Γ, then ϕ = φ × ψ, where φ : M1 → M1
and ψ : M2 → M2 are homotheties with factor c2

1 and c2
2 such that

λ1 = c1λ1 ◦ ψ and λ2 = c2λ2 ◦ φ.

In fact, if ϕ : M1×M2 → M1×M2 is given by ϕ(x, y) = (φ(x, y), ψ(x, y))
for all (x, y) ∈ M1 ×M2, then φ only depends on x and ψ on y because
ϕ preserves the canonical foliations. Using that it is an isometry, we
have (λ1 ◦ ψ)2φ∗(g1) + (λ2 ◦ φ)2ψ∗(g2) = λ2

1g1 + λ2
2g2 and therefore

φ∗(g1) =
(

λ1

λ1 ◦ ψ

)2

g1 and ψ∗(g2) =
(

λ2

λ2 ◦ φ

)2

g2.
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Since λ1

λ1◦ψ
only depends on M2, there exists a constant c1 such that

(
λ1

λ1◦ψ

)2
= c2

1 and analogously
(

λ2

λ2◦φ

)2
= c2

2.

The semi-Riemannian manifold M =
(
M1 ×(λ1,λ2) M2

)
/Γ has an in-

duced doubly warped structure, which, as always, we call (F1, F2). We
are going to work with F1 because all definitions and results are stated
analogously for F2.

If we take the canonical projection p : M1 × M2 → M , which is a
semi-Riemannian covering map, then applying lemma 3.1.9 we have p(M1 ×
{b}) ⊂ F1(p(a, b)) for all (a, b) ∈ M1 × M2. We call p(a,b)

1 : M1 × {b} →
F1(p(a, b)) the restriction of p.

Lemma 3.2.1. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. We take p : M1×M2 → M the canonical projection, (a, b) ∈
M1 × M2 and x = p(a, b). Then the restriction p(a,b)

1 : M1 × {b} → F1(x)
is a normal semi-Riemannian covering map. Furthermore, the inclusion
i# : π1 (F1(x), x) → π1(M, x) is injective.

Proof. It is clear that p(a,b)
1 : M1 × {b} → F1(x) is a local isometry. Let

γ : [0, 1] → F1(x) be a curve with γ(0) = x. Since p : M1 × M2 → M is a
covering map, there is a lift α : [0, 1] → M1 × M2 with α(0) = (a, b). But
p∗(α′(t)) = γ′(t) ∈ F1(γ(t)) and p preserves the foliations, so α(t) is a curve
in M1 × {b}. Applying [48, Theorem 28, pg. 201] we get that p(a,b)

1 is a
covering map.

Now we show that it is normal. Take a′ ∈ M1 such that p(a,b)
1 (a′, b) = x.

Then, there exists f ∈ Γ with f(a′, b) = (a, b) and since f preserves the
canonical foliations, f(M1 × {b}) = M1 × {b}. So, the restriction of f to
M1 × {b} is a deck transformation of the covering p(a,b)

1 which sends (a′, b)
to (a, b).

Finally, take γ a loop in F1(x) with γ(0) = x and i#
(
[γ]F1(x)

)
= 0, i.e.,

[γ]M = 0. Consider the following commutative diagram

π1(M1 × M2)
p#

// π1(M)

π1(M1 × b)

j#

OO

p
(a,b)
1#

// π1(F1(x))

i#

OO

If α is a lift of γ in M1 × M2 with basepoint (a, b), then α is a loop and
[α]M1×M2 = 0. Since p preserves the foliations, α is a curve in M1 × b and
therefore [α]M1×b = 0. Thus, [γ]F1(x) = p(a,b)

1#
([α]M1×b) = 0.
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Since the covering map p(a,b)
1 : M1 × {b} → F1(p(a, b)) is normal, if

we call Γ(a,b)
1 its deck transformation group, then F1(p(a, b)) = M1/Γ(a,b)

1 .
Usually, we identify M1 × {b} with M1 and given a′ ∈ M1 and φ ∈ Γ(a,b)

1 ,
we write p(a,b)

1 (a′) and φ(a′) instead of p(a,b)
1 (a′, b) and φ(a′, b) respectively.

When there is not confusion with the chosen point, we simply write p1 and
Γ1.

If φ ∈ Γ1, it does not need to exist ψ ∈ Γ2 with φ × ψ ∈ Γ and, a priori,
it has not to hold that λ2 = c2λ2 ◦ φ, as it was said at the beginning of this
section. However, if there is not holonomy, the above holds with c2 = 1.

Lemma 3.2.2. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. Fix (a0, b0) ∈ M1 ×M2 and x0 = p(a0, b0) such that the leaf
F1(x0) has not holonomy. Then

1. λ2 ◦ φ = λ2 for all φ ∈ Γ(a0,b0)
1 .

2. φ × id ∈ Γ for all φ ∈ Γ(a0,b0)
1 and Γ(a0,b0)

1 × {id} is a normal subgroup
of Γ.

Proof.

1. The mean curvature forms ω2 and ω2 of the foliations in M1×(λ1,λ2)M2
and M are closed, becuase they are doubly warped structures. Thus
every point in M or M1×M2 has an open neighborhood where ω2 = df2
or ω2 = df2 respectively, being f 2 = − ln λ2 (see page 8). Since
p1 ◦ φ = p1, we have φ∗(p∗(ω2)) = p∗(ω2) and therefore f2 ◦ p ◦ φ =
f2 ◦p+k1 for certain constant k1. On the other hand, applying point 3
of lemma 3.1.9, we have p∗(ω2) = ω2 and therefore f2 ◦p = − ln λ2 +k2
for some constant k2.

Replacing the second equation in the first one, we get λ2 ◦ φ = cλ2 for
certain constant c. This formula must be true in the whole M1 with
the same constant c and, in fact, c = λ2(a1)

λ2(a0) where a1 = φ(a0).

Take a curve α : [0, 1] → M1 × {b0} with α(0) = (a0, b0), α(1) =
(a1, b0) and w ∈ Tb0M2 a nonlightlike unitary vector. Using lemma
3.1.5 we have Aα(0a0 , w) = (0a1 , w) and since p preserves the adapted
translation,

Ap◦α

(
p∗(a0,b0)

(0a0 , w)
)

= p∗(a1,b0)
(0a1 , w).
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Since F1(x0) has not holonomy, by remark 3.1.7

Ap◦α

(
p∗(a0,b0)

(0a0 , w)
)

= p∗(a0,b0)
(0a0 , w),

and thus
p∗(a1,b0)

(0a1 , w) = p∗(a0,b0)
(0a0 , w).

Taking norms, λ2(a1) = λ2(a0)g2(w, w) and c = λ2(a1)
λ2(a0) = 1.

2. Take φ ∈ Γ1. Since λ2 ◦ φ = λ2, it is easily checked that φ × id is an
isometry of M1 ×(λ1,λ2) M2. Now, to show that p ◦ (φ × id) = p it is
enough to prove (p ◦ (φ × id))∗(a0,b0)

= p∗(a0,b0)
, since both maps are

isometries. Using p1 ◦ φ = p1 it is immediate that

(p ◦ (φ × id))∗(a0,b0)
(v, 0b0) = p∗(a0,b0)

(v, 0b0)

for all v ∈ Ta0M1.

On the other hand, if w ∈ Tb0M2 and α : [0, 1] → M1 × {b0} is a curve
from (a0, b0) to (a1, b0), where φ(a0) = a1, then Aα(0a0 , w) = (0a1 , w)
and

(p ◦ (φ × id))∗(a0,b0)
(0a0 , w) = p∗(a1,b0)

(0a1 , w) = p∗(a1,b0)

(
Aα(0a0 , w)

)

= Ap◦α

(
p∗(a0,b0)

(0a0 , w)
)

= p∗(a0,b0)
(0a0 , w),

where the last equality holds because F1(x0) has not holonomy. There-
fore φ × id ∈ Γ and Γ1 × {id} is a subgroup of Γ.

Now, to prove that it is a normal subgroup, we take φ ∈ Γ1 and
f ∈ Γ and show that f−1 ◦ (φ × id) ◦ f ∈ Γ1 × {id}. Suppose that
f(a0, b0) = (a′, b′). Since f preserves the canonical foliations, f(M1 ×
{b0}) = M1 ×{b′} and trivially (φ×id)(M1 ×{b′}) = M1 ×{b′}. Hence
f−1 ◦ (φ × id) ◦ f takes M1 × {b0} into M1 × {b0} and therefore

h = f−1 ◦ (φ × id) ◦ f
∣∣
M1×{b0}

belongs to Γ1. But h × id ∈ Γ coincides with f−1 ◦ (φ × id) ◦ f at
(a0, b0) and thus f−1 ◦ (φ × id) ◦ f = h × id ∈ Γ1 × {id}.

Remark 3.2.3. Observe that we have used that F1(x0) has not holonomy
only to ensure Ap◦α = id, thus we have a more general result. Take x =
p(a, b) ∈ M and suppose that γ : [0, 1] → F1(x) is a loop at x such that
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its associated holonomy map is trivial. Let α : [0, 1] → M1 × {b} be a lift
of γ through p1 : M1 × {b} → F1(x) with basepoint (a, b) and suppose that
α(1) = (a′, b). If φ ∈ Γ1 with φ(a) = a′, then it can be proven, identically as
in the above lemma, that for this deck transformation it holds λ2 ◦ φ = λ2
and φ × id ∈ Γ. This will be used in theorem 3.2.10.

Now, we can prove the following theorem, which generalizes theorem
1.2.7 (see also theorem 7 of [57]).

Theorem 3.2.4. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product and fix (a0, b0) ∈ M1 × M2 and x0 = p(a0, b0). The leaf
F1(x0) has not holonomy if and only if there exists a semi-Riemannian
normal covering map Φ : F1(x0) ×(λ1,ρ2) M2 → M , where ρ2 ∈ C∞(F1(x0))
is a positive function. Moreover, the following diagram is commutative

M1 × M2

p
(a0,b0)
1 ×id

²²

p
// M

F1(x0) × M2

Φ

99rrrrrrrrrrr

In particular, Φ(x, b0) = x for all x ∈ F1(x0).

Proof. Suppose that F1(x0) has not holonomy. Since Γ1 × {id} is a normal
subgroup of Γ, there exists a normal covering map

Φ :
(
M1 ×(λ1,λ2) M2

)
/ (Γ1 × {id}) → M.

But
(
M1 ×(λ1,λ2) M2

)
/ (Γ1 × {id}) is isometric to F1(x0) ×(λ1,ρ2) M2(x0) for

certain function ρ2 with ρ2 ◦ p1 = λ2 because F1(x0) = M1/Γ1. Moreover,
by construction, Φ(x, b) = p(a, b) where a ∈ M1 with p(a, b0) = x and so
the above diagram is commutative.

Conversely, we suppose the existence of such semi-Riemannian covering.
Take α : [0, 1] → F1(x0) a loop at x0, w ∈ Tx0F2(x0) and v ∈ Tb0M2 with
p∗(a0,b0)

(0, v) = w. Then

Φ∗(x0,b0)
(0, v) = Φ∗(x0,b0)

(
(p1 × id)∗(a0,b0)

(0, v)
)

= p∗(a0,b0)
(0, v) = w.

Now, using lemma 3.1.5, 3.1.9 and that the holonomy in F1(x0) × M2 is
trivial,

Aα(w) = Φ∗(x0,b0)

(
A(α,b0)(0, v)

)
= Φ∗(x0,b0)

(0, v) = w,

and therefore, by remark 3.1.7, F1(x0) has not holonomy.
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We say that x0 ∈ M has not holonomy if F1(x0) and F2(x0) have not
holonomy. As above, we can show the following.

Theorem 3.2.5. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product and fix (a0, b0) ∈ M1 × M2 and x0 = p(a0, b0). The point x0
has not holonomy if and only if there is a semi-Riemannian normal covering
map

Φ : F1(x0) ×(ρ1,ρ2) F2(x0) → M,

where ρ1 ∈ C∞(F2(x0)) and ρ2 ∈ C∞(F1(x0)) are positive functions. More-
over, the following diagram is commutative

M1 × M2

p
(a0,b0)
1 ×p

(a0,b0)
2

²²

p
// M

F1(x0) × F2(x0)
Φ

88pppppppppppp

In particular, Φ(x, x0) = x and Φ(x0, y) = y for all x ∈ F1(x0) and y ∈
F2(x0).

Basic covering map theory ensures that the deck transformation group
of the covering constructed in theorem 3.2.4 is

Ω = Γ/
(

Γ(a0,b0)
1 × {id}

)

and the one of the above theorem is

Ψ = Γ/
(

Γ(a0,b0)
1 × Γ(a0,b0)

2

)
.

Both in theorem 3.2.4 as in theorem 3.2.5, if we had a warped or a direct
structure, then we would obtain a covering map with a warped or direct
product as domain.

Remark 3.2.6. Observe that if φ× id ∈ Ψ, then for all x ∈ F1(x0) we have
φ(x) = Φ(φ(x), x0) = Φ(x, x0) = x, i.e., φ = id. Analogously, if id×ψ ∈ Ψ,
then ψ = id.

In any foliation, leaves without holonomy constitute a dense set on M ,
[19]. Given two orthogonal foliations, if we fix a leaf F1 without holonomy
of the first foliation, it is not difficult to show that leaves without holonomy
of the second foliation intersect F1 in a dense set. Thus, we can always take
a point x0 ∈ M without holonomy and apply theorem 3.2.5.

We are going to show some properties of the covering map Φ.
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Figure 3.1: Proof of theorem 3.2.7

Theorem 3.2.7. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. If x0 ∈ M has not holonomy then

card(F1(x0) ∩ F2(x0)) = card(Φ−1(x0)),

where Φ is the semi-Riemannian covering map of theorem 3.2.5.

Proof. Take
Λ : Φ−1(x0) → F1(x0) ∩ F2(x0)

given by Λ(x, y) = x.
First we show that Λ is well defined. Given (x, y) ∈ Φ−1(x0), using the

covering maps p1 : M1 × {b0} → F1(x0) and p2 : {a0} × M2 → F2(x0),
we can take a ∈ M1 and b ∈ M2 with p1(a) = x and p2(b) = y. Since
Φ◦(p1 ×p2) = p, we have p(a, b) = Φ (p1(a), p2(b)) = Φ(x, y) = x0 and hence
p({a} × M2) ⊂ F2(p(a, b)) = F2(x0) and p(M1 × {b0}) ⊂ F1(p(a0, b0)) =
F1(x0). Therefore,

x = p1(a) = p(a, b0) = p
(
M1 × {b0} ∩ {a} × M2

)
∈ F1(x0) ∩ F2(x0).

Now we check that Λ is onto (figure 3.1 left). Given x ∈ F1(x0) ∩
F2(x0), there exists a ∈ M1 such that p1(a) = x. But p(a,b0)

2 : {a} × M2 →
F2(x) = F2(x0) is a covering map too and therefore there is (a, b) ∈ {a}×M2
such that p(a, b) = x0. If we call y = p2(b) = p(a0, b), then Φ(x, y) =
Φ(p1(a), p2(b)) = p(a, b) = x0 and Λ(x, y) = x.

Finally, we show that Λ is injective (figure 3.1 right). Given (x, y), (x, y′) ∈
Φ−1(x0) take a ∈ M1 and b, b′ ∈ M2 such that p1(a) = x, p2(b) = y
and p2(b′) = y′. Then p(a, b) = Φ(p1(a), p2(b)) = Φ(x, y) = x0 and
p(a, b′) = Φ(p1(a), p2(b′)) = Φ(x, y′) = x0. Consider the covering map
p(a,b0)

2 : {a} × M2 → F2(x0). Since p(a,b0)
2 (a, b) = p(a,b0)

2 (a, b′) = x0 and
this covering is normal, there exist a deck transformation ψ ∈ Γ(a,b0)

2 such
that ψ(b) = b′. But F2(x0) has not holonomy, so lemma 3.2.2 assures that
id × ψ ∈ Γ. But (id × ψ)(a0, b) = (a0, b′) and thus y = y′.
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Figure 3.2: Red leaf intersects the orthogonal leaves (black lines) once. Blue leaf
intersects orthogonal leaves twice.

As an immediate corollary, we give a necessary and sufficient condition
for a doubly warped structure be a global doubly warped product.

Corollary 3.2.8. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a dou-

bly warped product. Then M is isometric to the doubly warped product
F1(x0) ×(ρ1,ρ2) F2(x0) of the leaves through x0 ∈ M if and only if x0 has not
holonomy and F1(x0) ∩ F2(x0) = {x0}.

A first version of above corollary, but under regularity hypothesis and
for Riemmanian manifold and direct product structures, can be found in
[62] (see theorem 1.2.8). The proof uses the theory of bundle-like foliations
and can not be directly transferred to the semi-Riemannian case.

We can summarize above results as follows. If Γ is a subgroup of
isometries of a doubly warped product M1 ×(λ1,λ2) M2 which acts in a
properly discontinuous manner and preserves the canonical foliations, then
(M1 × M2) /Γ is a doubly warped product F1(x0) ×(ρ1,ρ2) F2(x0) if and only
if Γ = Γ1 × Γ2. For this, it must be fulfilled two conditions:

1. If ϕ ∈ Γ then ϕ = φ × ψ where φ ∈ Γ1 and ψ ∈ Γ2.

2. If φ ∈ Γ1 and ψ ∈ Γ2 then φ × id ∈ Γ and id × ψ ∈ Γ.

Theorem 3.2.5 reduces above two conditions to show Ψ = {id}, which is
much easier, and corollary 3.2.8 actually shows that Ψ = {id} if and only
if x0 has not holonomy and F1(x0) ∩ F2(x0) = {x0}.

Note that condition F1(x0) ∩ F2(x0) = {x0} alone is not sufficient to
split M as a product F1(x0) × F2(x0), as intuition perhaps suggests. The
Möbius trip illustrates this point, see figure 3.2.
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The following theorem states that the intersection cardinal of two leaves
without holonomy is an upper bound of the intersection cardinal of any
two leaves. In particular, we can conclude some interesting facts: if the
intersection of two leaves without holonomy is finite, then the intersection
of two any leaves is finite. Moreover, the intersection of leaves without
holonomy have the same cardinal. Recall that this is not true for two
arbitrary foliations in a semi-Riemannian manifold, see example 3.2.14.

Theorem 3.2.9. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. If x0 has not holonomy then

card(F1(x) ∩ F2(x)) ≤ card(F1(x0) ∩ F2(x0))

for all x ∈ M .

Proof. Take (a0, b0) ∈ M1 × M2 such that p(a0, b0) = x0. First suppose
that x ∈ F1(x0) and F1(x) ∩ F2(x) = {xi : i ∈ I}, which implies F1(x0) =
F1(x) = F1(xi), i ∈ I. If we take a ∈ M1 such that p(a, b0) = x, then
we know that p(a,b0)

2 : {a} × M2 → F2(x) is a covering map, so we can
take bi ∈ M2 with p(a,b0)

2 (a, bi) = xi. If we call yi = p(a0,b0)
2 (a0, bi), then both

xi, yi ∈ p(M1×{bi}) = F1(p(a, bi)) = F1(x0) and moreover, since yi ∈ F2(x0)
we have yi ∈ F1(x0) ∩ F2(x0), see figure 3.3. Now, we show that the map

Λ : F1(x) ∩ F2(x) → F1(x0) ∩ F2(x0)

given by Λ(xi) = yi is injective. If yi = p(a0,b0)
2 (a0, bi) = p(a0,b0)

2 (a0, bj) = yj

for i 6= j then there is ψ ∈ Γ(a0,b0)
2 such that ψ(a0, bi) = (a0, bj). Since

F2(x0) has not holonomy, lemma 3.2.2 ensures that id × ψ ∈ Γ and it sends
(a, bi) to (a, bj). Therefore xi = xj. This shows that card(F1(x) ∩ F2(x)) ≤
card(F1(x0) ∩ F2(x0)) when x ∈ F1(x0).

Take now an arbitrary point x ∈ M and (a, b) ∈ M1 × M2 with p(a, b) =
x. We have that F2(x) intersects F1(x0) at some point z = p(a, b0). In the
same way as above, using that F1(x0) has not holonomy we can show that
card(F1(x)∩F2(x)) ≤ card(F1(z)∩F2(z)), but we have already proven that
card(F1(z) ∩ F2(z)) ≤ card(F1(x0) ∩ F2(x0)).

Now, we are going to compare a leaf without holonomy with other
leaves of the same foliation. For this, take x0 = p(a0, b0) ∈ M such
that F1(x0) has not holonomy and let Φ : F1(x0) ×(λ1,ρ2) M2 → M be
the semi-Riemannian covering map constructed in theorem 3.2.4, which has
Ω = Γ/

(
Γ(a0,b0)

1 × {id}
)

as deck transformation group. Take x ∈ F2(x0)
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Figure 3.3: Proof of theorem 3.2.9

and a point b ∈ M2 with Φ(x0, b) = x. Applying lemma 3.2.1, the restriction
of Φ,

Φ(x0,b)
1 : F1(x0) × {b} → F1(x),

is a normal semi-Riemannian covering map. Call Ω(x0,b)
1 its deck transfor-

mation group.

Theorem 3.2.10. In the above situation, the following sequence is exact

0 −→ π1(F1(x0), x0)
Φ(x0,b)

1#−→ π1(F1(x), x) H−→ Hol(F1(x)) −→ 0,

where H is the usual holonomy homomorphism. In particular we have
Ω(x0,b)

1 = Hol (F1(x)).

Proof. It is clear that Φ1# is injective and H is onto, so we only have to
prove that Ker H = Im Φ1#.

Take [γ] ∈ π1(F1(x), x) such that H([γ]) = 1, i.e. fγ = id, where fγ is
the associated holonomy map. Take α a lift of γ to F1(x0) × {b} through
Φ(x0,b)

1 with basepoint (x0, b) and φ ∈ Ω(x0,b)
1 such that φ(x0) = α(1). Since

fγ = id, it follows that ρ2 ◦ φ = ρ2 and φ × id ∈ Ω, see remark 3.2.3.
Therefore, taking into account that Φ(x, b0) = x for all x ∈ F1(x0), we

get
x0 = Φ1(x0, b0) = Φ1(φ(x0), b0) = φ(x0).

Hence α is a loop at x0 which holds Φ1#([α]) = [γ]. This shows that
Ker H ⊂ Im Φ1#.

By remark 3.1.7, to show the other inclusion it is sufficient to prove
AΦ1◦α = id for any [α] ∈ π1(F1(x0), x0). But this follows because given
v ∈ TxF1(x) and w ∈ Tx0F1(x0) with Φ1∗x0

(v) = w we have

AΦ◦α(v) = Φ1∗x0
(Aα(w)) = Φ1∗x0

(w) = v,

where the equality Aα(w) = w holds becuase the holonomy in the product
F1(x0) × M2 is trivial.
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Some consequences are the following corollaries.

Corollary 3.2.11. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product.

1. If F1(x0) has not holonomy, then for any other leaf F1 there exists a
normal semi-Riemannian covering map Φ : F1(x0) → F1 with deck
transformation group Hol(F1).

2. All leaves without holonomy are homothetic.

Proof. For the first point, note that given any leaf F1 it always exists x ∈
F2(x0) such that F1 = F1(x). For the second statement just take into
account that F1(x0) and F1(x0) × {b} are homothetic.

Corollary 3.2.12. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. If there is a noncompact leaf, then any compact leaf has
nontrivial holonomy.

Corollary 3.2.13. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product and take x0 = p(a0, b0) ∈ M . If F1(x0) has not holonomy,
then π1(F1(x0), x0) is a normal subgroup of π1(M, x0).

Proof. We already know from lemma 3.2.1 that π1(F1(x0), x0) is a subgroup
of π1(M, x0). Take [α] ∈ π1(F1(x0), x0) and [γ] ∈ π1(M, x0). We show
that [γ · α · γ−1] is homotopic to a loop in F1(x0). Take the covering map
Φ : F1(x0) × M2 → M and γ̃ = (γ̃1, γ̃2) a lift of γ starting at (x0, b0). Since
Φ(γ̃(1)) = x0, using corollary 3.2.11 we have Φ : F1(x0) × {γ̃2(1)} → F1(x0)
is an isometry, thus we can lift the loop α to a loop α̃ starting at γ̃(1).
Therefore, the lift of γ ·α ·γ−1 to F1(x0)×M2 starting at (x0, b0) is γ̃ · α̃ · γ̃−1,
see figure 3.4. But it is clear that this last loop is homotopic to a loop in
F1(x0) × {b0} and so γ · α · γ−1 is homotopic to a loop in F1(x0).

Lemma 3.2.2, and therefore all results in this section, does not hold
if we consider more general products than doubly warped product, as the
following example shows.

Example 3.2.14. First, we are going to construct a function λ : R
2 → R

+

step by step. Take h : R → R a strictly increasing function such that
h = id in a neighborhood of 0 but h 6= id out of this neighborhood and
λ : (−ε, ε) × R → R

+ any C∞ function for ε < 1
2 . We extend λ to the trip

(1 − ε, 1 + ε) × R defining λ(x, y) = λ(x − 1, h(y))h′(y) for every (x, y) ∈
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Figure 3.4: The lift of γ · α · γ−1.

(1 − ε, 1 + ε) × R and we extend it again to [ε, 1 − ε] × R in any way such
that λ : (−ε, 1 + ε) × R → R

+ is C∞.
Now, we define λ in [1+ε, ∞) recursively by λ(x, y) = λ(x−1, h(y))h′(y)

and in (−∞, −ε] by λ(x, y) = λ(x+1, f(y))f ′(y), where f is the inverse of h.
It is easy to show that λ : R

2 → R
+ is C∞ and λ(x, y) = λ(x − 1, h(y))h′(y)

for all (x, y) ∈ R
2. In figure 3.5 it is shown an example of such function λ

where

h(x) =






x − e
1

x+1 if x < −1
x if −1 ≤ x ≤ 1

x + e
1

1−x if 1 < x

Take R
2 endowed with the twisted metric dx2 + λ(x, y)2dy2 and Γ the

group generated by the isometry ϕ(x, y) = (x + 1, f(y)), which preserves the
canonical foliations and acts in a properly discontinuous manner. Canonical
foliations induce on M = R

2/Γ a twisted structure and the leaf p(R × {0}),
where p : R

2 → M is the canonical projection, is diffeomorphic to S
1 and it

does not have holonomy. However, theorem 3.2.4 does not hold because if
Φ : S

1 × R → M were a covering map, then S
1 would be a covering of all

leaves of the first foliation (corollary 3.2.11). But this is impossible because
the leaves p (R × {y}), 1 < |y|, are diffeomorphic to R.

We finish this section with a cohomological obstruction to the existence
of a quotient of a doubly warped product with compact leaves. If M1 and
M2 are n-dimensional, compact and oriented manifold, Künneth formula
implies that the n-th Betti number of the product M1 × M2 is greater or
equal than 2. The following theorem shows that the same is true for any
oriented quotient of a doubly warped product with n-dimensional compact
leaves.
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Figure 3.5: An example of function λ(x, y).

Theorem 3.2.15. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be an oriented quotient of

a doubly warped product such that the leaves of both foliations on M are n-
dimensional and compact submanifolds of M . Then, the n-th Betti number
of M satisfies bn ≥ 2.

Proof. Take a point (a0, b0) ∈ M1 × M2 such that x0 = p(a0, b0) has not
holonomy and Φ : F1(x0) ×(ρ1,ρ2) F2(x0) −→ M the covering map given
in theorem 3.2.5. Since M is oriented, M1 and M2 are orientable and Γ
preserves the orientation of M1 × M2. But Γ(a0,b0)

1 × {id} and {id} × Γ(a0,b0)
2

are normal subgroups of Γ and therefore they preserve the orientation of
M1 and M2 respectively. Thus Fi(x0) = Mi/Γ(a0,b0)

i is orientable.
Let [̟1], [̟2] ∈ Hn(M) be the Poincaré dual of F1(x0) and F2(x0). The

submanifolds Si = Φ−1(Fi(x0)) are closed in F1(x0) × F2(x0) and therefore
they are compact and, with the appropriate orientation, they have Poincaré
duals [σi] = Φ∗([̟i]), [12].

Call πi : F1(x0) × F2(x0) → Fi(x0) the canonical projection, Φi : Si →
Fi(x0) the restriction of Φ to Si, and ij : Sj → F1(x0)×F2(x0) the canonical
inclusion. Consider the following commutative diagram

Sj

ij
²²

Φj
// Fj(x0)

F1(x0) × F2(x0)

πj

77oooooooooooo
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If Θ1 is a volume form of F1(x0), then Φ∗
1(Θ1) = i∗

1(π∗
1(Θ1)) is a volume

form in S1. Therefore

0 6=
∫

S1

i∗
1π∗

1(Θ1) =
∫

F1×F2

π∗
1(Θ1) ∧ σ1,

and thus [σ1] is not null. In the same way we can show that [σ2] is not null.
Now if σ1 − cσ2 = dτ for some 0 6= c ∈ R and τ ∈ Λn−1(M), then

∫

F1×F2

π∗
1(Θ1) ∧ σ1 = c

∫

F1×F2

π∗
1(Θ1) ∧ σ2 = c

∫

S2

i∗
2π∗

1(Θ1) = 0,

which is a contradiction. Therefore [σ1] and [σ2] are linearly independent,
so the same is true for [̟1] and [̟2].

Observe that if the dimension of the foliations are n and m with n 6= m,
then we can only conclude that the n-th and m-th Betti numbers of M
satisfy bn, bm ≥ 1. In the category of four dimensional Lorentzian manifolds
we have the following result.

Corollary 3.2.16. In the conditions of the above theorem, if M is a four
dimensional Lorentzian manifold, then its first and second Betti numbers
satisfies b1, b2 ≥ 2.

Proof. From theorem 3.2.5 it is clear that M is compact and therefore the
existence of a Lorentz metric implies that the Euler characteristic is null.
So b1 = 1 + b2

2 ≥ 2.

3.3 Space of leaves

Given M =
(
M1 ×(λ1,λ2) M2

)
/Γ a quotient of a doubly warped product, we

call Li the space of leaves of the induced foliations Fi on M . Take x0 ∈ M
without holonomy and the normal covering map Φ : F1(x0)×(ρ1,ρ2) F2(x0) →
M , whose group of deck transformations is Ψ = Γ/(Γ1 × Γ2). An analogous
computation as the one on page 52 shows that the set Σx0 formed by those
maps ψ ∈ Diff(F2(x0)) such that there exists φ ∈ Diff(F1(x0)) with
φ × ψ ∈ Ψ is a group of homotheties of F2(x0).

Lemma 3.3.1. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. Suppose that the foliation F1 has not holonomy and take
x0 ∈ M such that F2(x0) has not holonomy. Then the action of Σx0 on
F2(x0) is free. Futhermore, if φ × ψ ∈ Ψ such that ψ has a fixed point, then
φ × ψ = id.
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Proof. Take ψ ∈ Σx0 and suppose that it has a fixed point x ∈ F2(x0). If φ ∈
Diff(F1(x0)) with φ × ψ ∈ Ψ, then Φ(z, x) = Φ(φ(z), ψ(x)) = Φ(φ(z), x)
for all z ∈ F1(x0). Since F1 has not holonomy, applying corollary 3.2.11,
Φ : F1(x0) × {x} → F1(x) is an isometry and so φ = id. But as we already
said in remark 57, if id × ψ ∈ Ψ, then ψ = id.

Given a manifold M and a group G, we say that an action of G in M is
properly discontinuous in the topological sense if for all x ∈ M there exists
a neighborhood x ∈ U such that U ∩ gU = ∅ for all g 6= id. In this case, the
quotient M/G is a topological manifold which is not necessarily Hausdorff.

If M is a Riemann manifold and G a subgroup of isometries acting in
a properly discontinuous manner in the topological sense, then it actually
acts in a properly discontinuous manner in the usual sense, i.e. points in
different orbits have open neighborhood with disjoint orbits, and therefore
the quotient is a true manifold.

Theorem 3.3.2. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product such that F1 is a regular foliation. If F2(x0) has not holon-
omy then

1. The group Σx0 acts in a properly discontinuous manner in the topo-
logical sense on F2(x0).

2. The restriction of the canonical projection onto the space of leaves,
ηx0 = η|F2(x0) : F2(x0) → L1, is a normal covering map with Σx0 as
deck transformation group.

Proof.

1. Suppose that Σx0 does not act in a properly discontinuous manner.
Then, there exists x ∈ F2(x0) such that for all neighborhood U of x
in F2(x0) there is ψ ∈ Σx0 , ψ 6= id, with U ∩ ψ(U) 6= ∅.
Take V ⊂ M a regular neighborhood of x adapted to F1. Since
Φ(x0, x) = x, we can lift V through the covering Φ : F1(x0)×F2(x0) →
M and suppose that there are open sets Ui ⊂ Fi(x0) with x0 ∈ U1,
x ∈ U2 and Φ : U1 × U2 → V an isometry. But U2 ∩ ψ(U2) 6= ∅ and
so there are certain y, z ∈ U2 with y = ψ(z). Moreover, z 6= y since ψ
does not have fixed points (lemma 3.3.1).
If we take φ with φ×ψ ∈ Ψ, then z = Φ(x0, z) = Φ(φ(x0), y) and thus
F1(z) = F1(y). Now, Φ(U1 × {y}) and Φ(U1 × {z}) are two different
slices of F1 in V which belong to the same leaf F1(z). But this is a
contradiction because V is regular neighborhood.
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2. Since Σx0 acts in a properly discontinnuous manner, the projection
F2(x0) → F2(x0)/Σx0 is a normal covering map. Consider the map

Λ : F2(x0)/Σx0 → L1

given by Λ([x]) 7→ F1(x). If [x] = [y], then there is φ × ψ ∈ Γ with
ψ(x) = y and so x = Φ(x0, x) = Φ(φ(x0), y), which implies that
F1(x) = F1(y), i.e. Λ is well defined.

Trivially Λ is onto. We show that it is injective. Suppose that Λ([x]) =
Λ([x′]), or equivalently, F1(x) = F1(x′). Since F1 has not holonomy,
Φ : F1(x0) × {x} → F1(x) is an isometry (corollary 3.2.11) and so
there is a ∈ F1(x0) with Φ(a, x) = x′. But also Φ(x0, x′) = x′ and
therefore there exists φ × ψ ∈ Γ with φ(x0) = a and ψ(x′) = x, which
means that [x] = [x′].

Finally, if V is a regular neighborhood of x ∈ F2(x0) then Λ|V ∩F2(x0)
coincides with the restriction of the canonical projection to V ∩F2(x0),
which is a local homeomorphism. Therefore L1 is homeomorphic to
F2(x0)/Σx0 .

As an immediate consequence we have the following.

Corollary 3.3.3. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product such that F1 is a regular foliation. If the space of leaves L1
is simply connected, then M is isometric to a global doubly warped product
F1(x0) ×(ρ1,ρ2) F2(x0).

Proof. If L1 is simply connected, then F2(x0) = L1 and Σx0 = id. Therefore
Ψ = Γ/(Γ1 × Γ2) = {id} and Φ is an isometry.

We give some conditions for L1 to be a true manifold. Given (a, b) ∈
F1(x0) × F2(x0) with Φ(a, b) = x we denote Ψ(a,b)

1 the deck transformation
group of the restriction Φ(a,b)

1 : F1(x0) × {b} → F1(x) of the covering map
Φ : F1(x0) ×(ρ1,ρ2) F2(x0) → M .

Theorem 3.3.4. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product. If M2 is a complete Riemannian manifold and F1 a regular
foliation, then the space of leaves L1 is a Riemannian manifold.
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Proof. Let x0 ∈ M be a point without holonomy. We show that Σx0 is
a group of isometries. Take ψ ∈ Σx0 and φ : F1(x0) → F1(x0) such that
ϕ = φ × ψ ∈ Ψ. As we already said at the beggining of section 3.2, ψ is an
homothety with factor c2 and ρ2 = cρ2 ◦ φ.

Suppose c 6= 1. Taking the inverse of ψ if it were necessary, we can
suppose c < 1. Then ψ : F2(x0) → F2(x0) is a contractive map and so it is
assured the existence of a fixed point b ∈ F2(x0). Hence ϕ(F1(x0) × {b}) =
F1(x0)×{b} and ϕ|F1(x0)×{b} ∈ Ψ(a,b)

1 , where a ∈ F1(x0) is some point. Using
lemma 3.2.2, c = 1 and we get a contradiction.

Applying the theorem 3.3.2, Σx0 acts in a properly discontinuous manner
on F2(x0) in the topological sense, but since F2(x0) is Riemannian and Σx0

a group of isometries, it actually acts in a properly discontinuously manner
in the usual sense. Thus, L1 is a Riemannian manifold.

Corollary 3.3.5. Let M = (M1 λ1 × M2) /Γ be a quotient of a warped prod-
uct, where M2 is a complete Riemannian manifold. If F1 is a regular fo-
liation, then the projection η : M → L1 is a semi-Riemannian submersion
with umbilic fibres.

Proof. We already know that L1 is a Riemannian manifold and ηx0 : F2(x0) →
L1 a local isometry, where x0 is a point without holonomy. Since Φ :
F1(x0) × F2(x0) → M is foliated, the following diagram is commutative
for all x ∈ F1(x0)

{x} × F2(x0)
ηx0◦pr2

²²

Φ
// F2(x)

ηx

xxpppppppppppp

L1

But being λ2 = 1, the map Φ : {x} × F2(x0) → F2(x) is a local isometry
and thus ηx : F2(x) → L1 is a local isometry for all x ∈ M . Therefore,
η : M → L1 is a semi-Riemannian submersion and the fibres are umbilic
because they are leaves of a warped structure.

Given a nondegenerate foliation F , it is called semi-Riemannian or
bundle-like when, locally, the leaves coincide with the fibres of a semi-
Riemannian submersion, [52, 61]. If the orthogonal distribution is inte-
grable, then F is a semi-Riemannian foliation if and only if F⊥ is totally
geodesic, [37]. In the case of a doubly warped product F1(x0)×(ρ1,ρ2) F2(x0),
the first canonical foliation is semi-Riemannian for the conformal metric(

ρ1

ρ2

)2g1 + g2.
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In the proof of theorem 3.3.4, we have shown that ρ2 is invariant under Ψ
and thus there exists a function σ2 : M → R

+ such that σ2 ◦Φ = ρ2. In this
case, it is easy to show that F1 is semi-Riemannian for the conformal metric
1
σ2
2
g, where g is the induced metric on M . Observe that, in the Riemannian

case and under regularity hypothesis, it is known that the space of leaves of a
bundle-like foliation is a true manifold and, moreover, the manifold is a fibre
bundle over it [52], but there is not an analogous in the semi-Riemannian
case. However, we can prove the following theorem, which ensures that,
under regularity hypothesis, a quotient of a doubly warped product is an
“almost” global product.

Theorem 3.3.6. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product such that F1 is a regular foliation. Then

1. The projection η : M → L1 is a fibre bundle. Moreover, it holds
π1(L1, F1) = π1(M, x)/π1(F1, x) where x ∈ F1 ∈ L1.

2. There exists an open dense subset W ⊂ M globally isometric to a
doubly warped product.

Proof.

1. Take F1 ∈ L1 and x0 ∈ F1 a point without holonomy. Since ηx0 :
F2(x0) → L1 is a covering map, there are open sets U ⊂ F2(x0) and
V ⊂ L1 with x0 ∈ U and F1 ∈ V such that ηx0 : U → V is an
homeomorphism.

We show that Φ(F1(x0) × U) = η−1(V ). If (a, b) ∈ F1(x0) × U , then
η(Φ(a, b)) = η(Φ(x0, b)) = η(b) = ηx0(b) ∈ V . Conversely, given
x ∈ η−1(V ), if we call b = η−1

x0
(η(x)) ∈ U , then the leaves through b

and x coincide because η(x) = ηx0(b) and therefore Φ : F1(x0)×{b} →
F1(x) is an isometry (corollary 3.2.11). So, there exists a ∈ F1(x0)
with Φ(a, b) = x.

We claim that the map Φ : F1(x0) × U → η−1(V ) is injective (and
hence an isometry). In fact, if (a, b), (a′, b′) ∈ F1(x0)×U with Φ(a, b) =
Φ(a′, b′) then

ηx0(b) = ηx0(Φ(x0, b)) = ηx0(Φ(a, b)) = ηx0(Φ(a′, b′))
= ηx0(Φ(x0, b′)) = ηx0(b

′).

But since b, b′ ∈ U and ηx0 : U → V is an homeomorphism, we get
that b = b′. Using that Φ : F1(x0) × {b} → F1(b) is an isometry, we
deduce that a = a′.
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Figure 3.6: If we remove the blue leaf from the cylinder, then we obtain a global
product.

Now, the map hV that makes commutative the following diagram

F1(x0) × U

Φ
²²

id×ηx0

''OOOO
OOOO

OOOO

η−1(V ) hV
// F1(x0) × V

shows that M is locally trivial and η a fibre bundle.

Finally, using theorem 4.41 of [33], η# : π1(M, F1, x0) → π1(L1, F1)
is an isomorphism, but corollary 3.2.13 ensures that π1(F1, x0) is a
normal subgroup of π1(M, x0) and hence it holds π1(M, F1, x0) =
π1(M, x0)/π1(F1, x0).

2. Since ηx0 : F2(x0) → L1 is a covering map, we can take an open dense
set Θ ⊂ L1 and an open set U ⊂ F2(x0) such that ηx0 : U → Θ is an
homeomorphism. Since Θ is dense, W = η−1(Θ) is dense in M and
we can show as in the above proof that Φ : F1(x0) × Θ → W is an
isometry.

Recall that this open set W is obtained removing a suitable set of leaves
of F1 from M . This is false for more general product, as twisted products
(see example 3.2.14). In figure 3.6, we consider the doubly warped struc-
ture (direct product structure in this case) given by orthogonal helices in a
Riemannian cylinder . The dense open set W is obtained removing one of
these helices.



Chapter 3. Doubly warped structures 71

3.4 Global decomposition result

If V is a vectorial space decomposed into two complementary subspaces,
V = V ⊕ H, we say that a plane Π is a mixed plane if Π = span(u, v)
where u ∈ H and v ∈ V . In this section, we show how the sign of sectional
curvature of mixed planes in a doubly warped structure leads the global
decomposition. First, we need the following technical lemma.

Lemma 3.4.1. Let M be a complete semi-Riemannian manifold of index ν
and λ ∈ C∞(M) a positive function. If ν < dim M and g(Hessλ(v), v) ≤ 0
for all spacelike vector v (or 0 < ν and g(Hessλ(v), v) ≤ 0 for all timelike
vector v), then λ is constant.

Proof. Suppose ν < dim M . Take x ∈ M and V a normal convex neighbor-
hood containing x. Call S(x) the set formed by the points y ∈ V such that
there exists a nonconstant spacelike geodesic inside V joining x with y. It is
obvious that S(x) is an open set for all x ∈ M which does not contain x. Let
γ : R → M be a spacelike geodesic with γ(0) = x. If we call y(t) = λ(γ(t)),
then y(t) > 0 and y′′(t) ≤ 0 for all t ∈ R, which implies that λ is constant
in S(x). Given x1 ∈ S(x), we have that S(x1) is a neighborhood of x where,
as above, λ is constant. Therefore, λ is locally constant and since M is
supposed connected, it is constant on M . The case 0 < ν is similar taking
timelike geodesics.

The following proposition gives us a clue about the curvature inequality
that we are looking for.

Proposition 3.4.2. Let M1 ×(λ1,λ2) M2 be a doubly warped product with
M1 and M2 complete semi-Riemannian manifold of index νi < dim Mi. If
K(Π) ≥ 0 for all spacelike mixed plane Π, then λ1 and λ2 are constant.

Proof. First note that if f ∈ C∞(M1), then Hessf (v, w) = Hess1
f (v, w) for

all v, w ∈ TM1, where Hessf is the hessian respect to the doubly warped
metric g and Hess1

f respect to g1.
Suppose that there exists a spacelike vector u0 ∈ TM1 such that 0 ≤

Hessλ2(u0, u0). Given an arbitrary spacelike vector v ∈ TM2, using formu-
las of page 8 we have

1
λ1

Hessλ1(v, v) = −K (span(u0, v)) − 1
λ2

Hessλ2(u0, u0) ≤ 0

and applying the above lemma, λ1 is constant. But then, fixing a space-
like vector v0 ∈ TM2 we get 1

λ2
Hessλ2(u, u) = −K (span(u, v0)) ≤ 0 for
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all spacelike vector u ∈ TM1 and applying the above lemma again, λ2 is
constant too.

Suppose now the contrary case: for all spacelike vector u ∈ TM1 we
have Hessλ2(u, u) < 0. Then, the above lemma gives us that λ2 is constant
and therefore 0 ≤ − 1

λ1
Hessλ1(v, v) for all spacelike v ∈ TM2. Above lemma

again ensures that λ1 is constant too.

Now we can show that negative curvature for mixed planes leads to the
global decomposition.

Theorem 3.4.3. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be a quotient of a doubly

warped product, being M1 a complete Riemannian manifold and M2 a semi-
Riemannian manifold with 0 < ν2. Suppose that F2 has not holonomy,
K(Π) < 0 for all mixed nondegenerate plane Π and λ2 has some critical
point. Then M is globally a doubly warped product.

Proof. If there is a nonlightlike vector v ∈ TM2 such that εvHessλ1(v, v) ≤
0, then for an arbitrary nonzero vector u ∈ TM1 we have

Hessλ2(u, u) = −εvλ2

λ1
Hessλ1(v, v) − λ2K (span(u, v)) > 0

If 0 < εvHessλ1(v, v) for all nonlightlike vector v ∈ TM2, then apply-
ing lemma 3.4.1 we get that λ1 is constant and therefore Hessλ2(u, u) =
−λ2K (span(u, v)) > 0 for all u ∈ TM1, u 6= 0.

In any case, Hessλ2 is positive definite and so λ2 has exactly one critical
point.

Take x0 = p(a0, b0) ∈ M a point without holonomy and Φ : F1(x0)×(ρ1,ρ2)
F2(x0) → M the associated covering map. By construction, ρ2 ◦ p1 = λ2,
where p1 : M1 × {b0} → F1(x0), and so ρ2 also has only one critical point,
which we call x1 ∈ F1(x0). If φ × ψ is a deck transformation of Φ, we know
that ρ2 ◦ φ = cρ2 for some constant c and thus φ(x1) ∈ F1(x0) is also a
critical point of ρ2. Therefore φ(x1) = x1, but applying lemma 3.3.1 we get
φ × ψ = id and so Φ is an isometry.

Observe that in the conditions of the above theorem F1(x0) = M1. In
fact, since ρ2 ◦ p1 = λ2, points in the fibre p−1

1 (x1) are critical points of λ2.
But since it has only one critical point, it follows that p1 is an isometry.

On the other hand, we can not suppose that M1 is compact to ensure
that λ2 has a critical point because in the hypothesis of the theorem Hessλ2

is positive definite.

Example 3.4.4. Kruskal space has warped function with exactly one critical
point. Thus, the last part of the above proof shows that any quotient without
holonomy is a global warped product.
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To end this section, we give a decomposition theorem whose hypotheses
fit to Schwarzschild space.

Lemma 3.4.5. Let F1 ×(ρ1,ρ2) F2 be a doubly warped product and Ψ a group
of isometries which preserves the canonical foliations. If F1 or F2 is Rie-
mannian and compact then ρ1 and ρ2 are invariant under Ψ.

Proof. Given ϕ = φ × ψ ∈ Ψ, we know that φ∗(g1) = c1g1, ψ∗(g2) = c2g2,
ρ1 = c1ρ1 ◦ ψ and ρ2 = c2ρ2 ◦ φ for certain positive constants c1 and c2.

Suppose that F2 is a Riemannian compact manifold. Then any homo-
thety of F2 is in fact an isometry and so c2 = 1. Now, take any x0 ∈ M2
and the sequence xn+1 = ψ(xn). Using the relation ρ1 ◦ ψ = 1

c1
ρ1 is easy to

show that ρ1(xn) = 1
cn
1
ρ1(x0) for all n ≥ 0. But we can extract a convergent

subsequence xnk
to some point x and therefore limk→∞ cnk

1 = ρ1(x0)
ρ1(x) 6= 0,

which implies that c1 = 1.

Theorem 3.4.6. Let M =
(
M1 ×(λ1,λ2) M2

)
/Γ be an orientable quotient of

a doubly warped product with dim M1 = 2 and M2 a compact Riemannian
and even dimensional manifold with positive curvature. Suppose that λ2
does not have critical points and has a connected level hypersurface. If F1
is orientable and has not holonomy, then M is globally a doubly warped
product.

Proof. Since M and F1 are orientable, also is F2. Take x0 ∈ M without
holonomy and the covering map Φ : F1(x0) ×(ρ1,ρ2) F2(x0) → M . Since M is
orientable, so is F1(x0)×F2(x0) and Ψ, the deck transformation group of Φ,
preserves the orientation. Moreover, using the above lemma, ρ2 in invariant
under Ψ and so there exists σ2 : M → R

+ which is constant through the
leaves of F2.

Take x ∈ M and f : U → U a holonomy map of the leaf F2(x), where
x ∈ U ⊂ F1(x). The map f preserves the orientation induced in F1(x)
because F1 is orientable, but being σ2 constant through the leaves of F2,
we have f∗(∇σ2) = ∇σ2, which implies that f = id because dimF2(x) = 2.
This show that F2 has not holonomy.

Now, given φ × ψ ∈ Ψ, we have that ψ : F2(x0) → F2(x0) is an isometry,
because ρ2 is invariant under Ψ. If ψ preserves the orientation, applying
the theorem of Synge-Weinstein, it has a fixed point. If ψ reverses the
orientation, φ also reverses the orientation and therefore φ : S → S, where
S is a connected level hypersuface of ρ2, has a fixed point since S is one
dimensional. In any case, lemma 3.3.1 ensures that φ × ψ = id and thus Φ
is an isometry.
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Example 3.4.7. Using above theorem, any orientable quotient of Schwarzs-
child space such that F1 is orientable and has not holonomy is a global
warped product.

3.5 Semi-Riemannian submersions

We apply the results of the previous sections to a semi-Riemannian submer-
sions π : M → B with umbilic fibres. First, we are going to compute the
covariant derivative of the O’Neill tensor T .

Lemma 3.5.1. Let π : M → B be a semi-Riemannian submersion and
E, X, V ∈ X(M) with X ∈ H and V ∈ V. Then it holds

1. ∇XEV − (∇XE)V = A(X, E∗),

2. ∇V EV − (∇V E)V = T (V, E∗),

where E∗ = EV − EH.

Proof. We have ∇XE = ∇XEV + ∇XEH, and therefore

(∇XE)V = (∇XEV)V + (∇XEH)V = (∇XEV)V + A(X, EH).

On the other hand, ∇XEV = (∇XEV)V+(∇XEV)H = (∇XEV)V+A(X, EV),
and using the above relation,

∇XEV = (∇XE)V − A(X, EH) + A(X, EV) = (∇XE)V + A(X, E∗).

The second points is analogous.

Lemma 3.5.2. Let π : M → B be a semi-Riemannian submersion with
umbilic fibres and mean curvature vector field N . Given E, F, X ∈ X(M)
with X ∈ H, it holds

1. T (E, F ) = g(EV , F V)N − g(N, F )EV .

2. (∇XT )(E, F ) = g
(
F, A(X, E∗)

)
N−g(N, F )A(X, E∗)+g(EV , F V)∇XN−

g(∇XN, F )EV .

3. (∇V T )(E, F ) = g(N, E)
(
g(V, F )N − g(N, F )V

)
+ g(EV , F V)∇V N −

g(∇V N, F )EV .

Proof.

1. It is immediate.
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2. We have (∇XT )(E, F ) = ∇XT (E, F ) − T (∇XE, F ) − T (E, ∇XF ).
We compute each term.

∇XT (E, F ) = ∇X

(
g(EV , F V)N − g(N, F )EV)

=
(
g(∇XEV , F V) + g(EV , ∇XF V)

)
N + g(EV , F V)∇XN

−
(
g(∇XN, F ) + g(N, ∇XF )

)
EV − g(N, F )∇XEV .

T (∇XE, F ) = g((∇XE)V , F V)N − g(N, F )(∇XE)V .

T (E, ∇XF ) = g(EV , (∇XF )V)N − g(N, ∇XF )EV .

Rearranging terms and using that ∇XEV − (∇XE)V = A(X, E∗), we
obtain

(∇XT )(E, F ) =
(
g(A(X, E∗), F V) + g(EV , A(X, F ∗))

)
N

− g(N, F )A(X, E∗) + g(EV , F V)∇XN
− g(∇XN, F )EV .

But

g(A(X, E∗), F V) + g(EV , A(X, F ∗))
= −g(A(X, EH), F V) − g(EV , A(X, F H))
= −g(A(X, EH), F V) + g(A(X, EV), F H)
= g(A(X, −EH), F ) + g(A(X, EV), F )
= g(A(X, E∗), F ).

And we obtain the result.

3. As above

∇V T (E, F ) =
(
g(∇V EV , F V) + g(EV , ∇V F V)

)
N + g(EV , F V)∇V N.

−
(
g(∇V N, F ) + g(N, ∇V F )

)
EV − g(N, F )∇V EV .

T (∇V E, F ) = g((∇V E)V , F V)N − g(N, F )(∇V E)V .
T (E, ∇V F ) = g(EV , (∇V F )V)N − g(N, ∇V F )EV .

Using the above lemma and rearranging,

(∇V T )(E, F ) = −
(
g(T (V, EH), F V) + g(EV , T (V, F H))

)
N

− g(N, F )T (V, E∗) + g(EV , F V)∇V N
− g(∇V N, F )EV .
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But g(T (V, EH), F V) + g(EV , T (V, F H)) = −g(T (V, E∗), F ) and we
obtain

(∇V T )(E, F ) = g(T (V, E∗), F )N − g(N, F )T (V, E∗)
+ g(EV , F V)∇V N − g(∇V N, F )EV .

We obtain the result replacing T with the expression of point 1.

Now we can compute the curvature tensor for a semi-Riemannian sub-
mersion with umbilic fibres. For this, we only have to use the above lemma,
the properties of the tensors A and T and the curvature formulaes of [48]
(recall that the curvature sign in O’Neill’s paper is the opposite of the used
here)

Proposition 3.5.3. Let π : M → B be a semi-Riemannian submersion with
umbilic fibres and mean curvature vector field N . Take V, W, X, Y ∈ X(M)
with V, W ∈ V and X, Y ∈ H. Then

1. g(R(V, W, W ), V ) = g(R̂(V, W, W ), V ) − g(N, N)
(
g(V, V )g(W, W ) −

g(V, W )2
)
.

2. g(R(X, V, V ), X) = g(V, V )
(
g(∇XN, X) − g(N, X)2

)

+ g(A(X, V ), A(X, V )).

3. g(R(X, Y, Y ), X) = g
(
RB(π∗(X), π∗(Y ), π∗(Y )), π∗(X)

)

− 3g(A(X, Y ), A(X, Y )).

where R̂ is the curvature tensor of the fibres and RB the one of B. In
particular, the sectional curvature is given by

1. K (span(V, W )) = K̂(V, W ) − g(N, N).

2. K (span(X, V )) = g(∇XN,X)−g(N,X)2
g(X,X) + g(A(X,V ),A(X,V ))

g(X,X)g(V,V ) .

3. K (span(X, Y )) = KB(π∗(X), π∗(Y )) − 3 g(A(X,Y ),A(X,Y ))
g(X,X)g(Y,Y )−g(X,Y )2 .

Proposition 3.5.4. Let π : M → B be a semi-Riemannian submersion with
umbilic fibres and mean curvature vector field N . Let V, W, X, Y ∈ X(M)
with V ⊥ W ∈ V and X ⊥ Y ∈ H. Then

1. g(R(V, W, V ), X) = −g(V, V )g(∇W N, X).

2. g(R(V, X, X), W ) = g(A(X, V ), A(X, W )).
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3. g(R(Y, X, Y ), V ) = g((∇Y A)(X, Y ), V ) − 2g(Y, N)g(A(X, Y ), V ).

We will compute the lightlike sectional curvature of the following kind
of degenerate planes.

Definition 3.5.5. Suppose that V is a Lorentzian vector space such that
V = V ⊕ H, where V is a Lorentzian subspace. Given a plane Π of V, we
say that it is an almost mixed plane if it contains a vector of V or H.

Recall that a mixed planes is the one generated by a vector of V and
another of H. We can give the following simple classification of almost
mixed degenerate planes, which will simplify computations.

Lemma 3.5.6. Let V be a Lorentzian vector space such that V = V ⊕ H,
where V is a Lorentzian subspace, and take Π a degenerate plane of V. If Π
is a mixed plane, then Π = span(u, w) where u ∈ V is lightlike and w ∈ H.
If Π is an almost mixed plane, but not mixed, then one of the following
holds.

1. Π = span(u, e), where u ∈ V is lightlike and e ∈ V with eV 6= 0.

2. Π = span(u, v) where u ∈ V is lightlike with uH 6= 0 and v ∈ V is a
spacelike vector.

3. Π = span(u, w) where u ∈ V is lightlike with uH 6= 0 and w ∈ H.

Proof. Suppose that Π = span(u, e), where u is a lightlike vector. If we
decompose u = uV + uH, then g(uV , uV) = −g(uH, uH) ≤ 0, i.e., uV is
timelike or lightlike.

Suppose that Π is mixed. If uV is timelike, then for any vertical vector
v ∈ Π we have 0 = g(u, v) = g(uV , v) and thus v is spacelike. Since Π can be
generated by a vertical and an horizontal vector, it would not be degenerate.
Therefore, uV has to be lightlike and so uH = 0. In other words, u is vertical
and since Π is mixed, there is w ∈ H such that Π = span(u, w).

Suppose now that Π is almost mixed. As above, if uV is lightlike, then
u is vertical and we obtain case 1. If uV is timelike, then we obtain cases 2
or 3.

Observe that if dimV = 1, then any degenerate plane is an almost mixed
plane of type 3.

Proposition 3.5.7. Let M be a Lorentzian manifold, B Riemannian and
π : M → B a semi-Riemannian submersion with umbilic fibres and mean
curvature vector N . Take Π a degenerate plane in TM .
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Figure 3.7: Red plane is a mixed plane, whereas blue one is an almost mixed.

1. If it is a mixed plane, then Ku(Π) = g(A(w,u),A(w,u))
g(w,w) , being Π = span(u, w)

with w ∈ H and u ∈ V lightlike.

2. If it is an almost mixed plane of type 1, then

Ku(Π) =
g(eV , eV)
g(e, e)

K̂u(eV , u) +
g(A(e, u), A(e, u))

g(e, e)
,

being K̂ the lightlike sectional curvature of the fibre and Π = span(u, e)
with eV 6= 0 and u ∈ V lightlike. In particular, if Π is a vertical plane,
Ku(Π) = K̂u(Π).

3. If it is an almost mixed plane of type 2, then

Ku(Π) = g(uV , uV)
(

K̂(v, uV) − g(N, N)
)

+ g(∇uV N, uH)

+ g(∇uN, uH) − g(N, u)2 +
g(A(u, v), A(u, v))

g(v, v)
,

being Π = span(u, v) with v ∈ V, u lightlike and uH 6= 0.

4. If it is an almost mixed plane of type 3, then

Ku(Π) = g(uH, uH)KB(π∗(w), π∗(u))

+
1

g(w, w)

(
g(uV , uV)

(
g(∇wN, w) − g(w, N)2)

+ g(A(w, u), A(w, u))

− 2g
(
(∇wA)(uH, w), uV)

+ 4g
(
A(u, w), g(w, N)uV − A(u, w)

))
,

being Π = span(u, w) with w ∈ H, u lightlike and uH 6= 0.



Chapter 3. Doubly warped structures 79

Proof.

1. From formula 2 of proposition 3.5.3,

Ku(Π) =
g(R(w, u, u), w)

g(w, w)
=

g(A(w, u), A(w, u))
g(w, w)

.

2. Using formulaes 1 and 2 of proposition 3.5.3 and 1 of proposition 3.5.4,

Ku(Π)g(e, e) = g(R(u, eV , eV), u) + 2g(R(u, eV , eH), u)
+ g(R(u, eH, eH), u)
= g(R̂(u, eV , eV), u) + g(A(eH, u), A(eH, u))
= g(eV , eV)K̂u(u, eV) + g(A(e, u), A(e, u)).

3. We have,

g(v, v)Ku(Π) = g(R(v, uV , uV), v) + 2g(R(v, uV , uH), v)
+ g(R(v, uH, uH), v)

= g(uV , uV)g(v, v)
(

K̂(v, uV) − g(N, N)
)

+ 2g(v, v)g(∇uV N, uH)
+ g(v, v)

(
g(∇uHN, uH) − g(N, uH)2)

+ g(A(uH, v), A(uH, v))

= g(uV , uV)g(v, v)
(

K̂(v, uV) − g(N, N)
)

+ g(v, v)g(∇uV N, uH)
+ g(v, v)

(
g(∇uN, uH) − g(N, u)2)

+ g(A(u, v), A(u, v)).

4. We have

g(w, w)Ku(Π) = g(R(w, uV , uV), w) + 2g(R(w, uV , uH), w)
+ g(R(w, uH, uH), w)
= g(uV , uV)

(
g(∇wN, w) − g(w, N)2)

+ g(A(w, uV), A(w, uV)) − 2g((∇wA)(uH, w), uV)
+ 4g(w, N)g(A(uH, w), uV)
+ g(w, w)g(uH, uH)KB(π∗(w), π∗(u))
− 3g(A(w, uH), A(w, uH)).
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But since we habe that g(A(w, u), A(w, u)) = g(A(w, uV), A(w, uV))+
g(A(w, uH), A(w, uH)), we can rearrange to obtain

g(w, w)Ku(Π) = g(uV , uV)
(
g(∇wN, w) − g(w, N)2)

+ g(A(w, u), A(w, u)) − 2g((∇wA)(uH, w), uV)
+ 4g

(
A(u, w), g(w, N)uV − A(u, w)

)

+ g(w, w)g(uH, uH)KB(π∗(w), π∗(u)).

Imposing restriction on the curvature, we can get some information
about a semi-Riemannian submersion with umbilic fibres.

Proposition 3.5.8. Let M be a Lorentzian manifold, B Riemannian and
π : M → B a semi-Riemannian submersion with umbilic fibres of dimension
k > 1.

1. If K(Π) ≤ 0 for all degenerate mixed plane Π on M , then M is locally
isometric to a twisted product.

2. If K(Π) ≤ 0 for all mixed spacelike plane Π of M , then M is locally
isometric to a twisted product.

3. If M is complete and 0 ≤ K(Π) for all mixed timelike plane, then M
is locally a direct product.

4. If M is complete, k > dimB and K(Π) ≥ 0 for all mixed spacelike
plane of M , then the fibres are geodesic.

Proof.

1. Fix w ∈ H. Given an arbitrary lightlike vector u ∈ V, since span(w, u)
is a degenerate mixed plane, using proposition 3.5.7 we have A(w, u) =
0. If we consider the homomorphism Aw : V → H, then the light cone
is a subset of KerAw, and thus Aw = 0. Since w is arbitrary A ≡ 0
and therefore the orthogonal distribution to the fibres is integrable
and geodesic. Applying proposition 3 of [51], M is locally a twisted
product.

2. If K(Π) ≤ 0 for all mixed spacelike plane, by continuity K(Π) ≤ 0 for
al mixed degenerate plane.
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3. Given w ∈ H and v ∈ V unitary and timelike vectors we have 0 ≤
g(∇wN, w)−g(w, N)2 −g(A(w, v), A(w, v)) ≤ g(∇wN, w)−g(w, N)2.
If γ is an horizontal geodesic, the above can be written as 0 ≤ y′ − y2,
where y(t) = g(N, γ′). But since γ is complete, y ≡ 0 and N = 0.
Therefore, we obtain 0 ≤ −g(A(w, v), A(w, v)) ≤ 0 for arbitrary w ∈
H and v ∈ V , i.e., A = 0.

4. Take a vector w ∈ H and γ : R → M an horizotal geodesic with
γ′(0) = w. Since dimV > dimH, the dimension of the kernel of
Aγ′ : V → H ∩ γ′⊥ is greater or equal to 2, and therefore, for each
t ∈ R, we can choose a spacelike vector v ∈ V such that A(γ′, v) = 0.

Now, it holds 0 ≤ K(γ′, v) = g(∇γ′N, γ′) − g(N, γ′)2 or equivalently
0 ≤ y′ − y2, where y = g(N, γ′). But as above, this implies N ≡ 0.

Note that for the point 3 it is not necessary the hypothesis k > 1. As a
corollary of the above proposition, we have the following.

Corollary 3.5.9. Let M be a constant sectional curvature Lorentzian ma-
nifold, B Riemannian and π : M → B a semi-Riemannian submersion with
umbilic fibres of dimension k > 1. Then B has the same constant curvature
as M and the orthogonal distribution is integrable.

Moreover, if M is complete and has nonnegative constant curvature, then
M , B and the fibres have zero constant curvature.

Proof. Since M has constant curvature, K(Π) = 0, and thus the orthogonal
distribution is integrable. Now, formula 3 of proposition 3.5.3 implies that
B has the same constant curvature as M .

If KM ≥ 0, point 3 of the above proposition ensures that M is locally a
direct product. But then KM = 0 and thus the base B and the fibres also
has zero sectional curvature.

Finally, we are able to prove the main theorem of this section, which
states a curvature condition under which a semi-Riemannian submersion
with umbilic fibres is the canonical projection of a global warped product.

This same problem is considered in [5, 6] and [21, 60, 61]. In this latter
ones, bundle-like umbilic foliations are considered, what is a more general
structure that a semi-Riemannian submersion with umbilic fibres, but in all
of them only local results are obtained.



82 3.5. Semi-Riemannian submersions

Theorem 3.5.10. Let M be a complete Lorentzian manifold, B Rieman-
nian and π : M → B a semi-Riemannian submersion with umbilic fibres of
dimension k > 1. If K(Π) < 0 for all mixed spacelike plane and the mean
curvature vector field is closed with some zero, then M is globally a warped
product and π the canonical projection onto the base.

Proof. Using proposition 3.5.8, the orthogonal distribution to the fibres is
integrable and necessarily geodesic. Since N is closed, the fibres and the
orthogonal foliation constitute a warped structure and being M complete
M = (M1 ×λ2 M2)/Γ (see remark 3.1.3). Now, formula 2 of proposition 3.5.3
shows that the curvature of a mixed plane is independent of the vertical
vector and thus K(Π) < 0 for all mixed nondegenerate plane. Finally, since
N = −∇ ln λ2 and it has some zero, λ2 has some critical point and applying
theorem 3.4.3 we get the result.



CHAPTER 4

Uniqueness theorems

In this chapter, we study the uniqueness of a product decomposition, where
it is understood in the following sense: a decomposition is unique if the
corresponding foliations are uniquely determined. The main idea to do this
is to induce suitable foliations in a submanifold from those of the ambient,
which allows us to decompose the submanifold itself.

There are not many papers about this topic and only the uniqueness
of Riemannian direct products and Lorentzian static spaces with compact
base have been considered.

In the first section, we prove the uniqueness of direct product decom-
positions, extending known results for Riemannian manifolds to the semi-
Riemannian case.

In the second section, we study the uniqueness of GRW decompositions,
obtaining that the De Sitter space is the only complete Lorentzian manifold
with several GRW decompositions. A possible interest of the uniqueness of
this kind of decompositions comes from the recently introduced ”big rip”
models which try to explain the accelerated expansion of the Universe. The
qualitative properties of the models depend on the behavior of the warping
function, [22]. So we must ensure that the qualitative behavior of this
function (or the function itself) is univocally determined.

Last two sections are devoted to the uniqueness of static decomposi-
tions. Unlike previous cases, this seems more complicated and curvature
hypotheses are needed to obtain a classification of manifold with different
static decompositions.

83
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4.1 Direct product decompositions

We start proving that, under suitable conditions, an umbilic submanifold
of a direct product has an induced twisted structure.

Proposition 4.1.1. Let M = F1 × . . . × Fk be a semi-Riemannian direct
product and F1, . . . , Fk the canonical foliations. Take S an umbilic subman-
ifold of M and suppose that there exists i ∈ {1, . . . , k} such that Fi(x)∩TxS
is a nondegenerate subspace with constant dimension for all x ∈ S. Con-
sider the distributions T1 and T2 on S given by T1(x) = Fi(x) ∩ TxS and
T2(x) = T ⊥

1 (x) ∩ TxS for all x ∈ S. Then

1. T1 and T2 are integrable.

2. T1 is regular and umbilic and T2 is geodesic in S.

3. If S is spherical (resp. geodesic) then T1 is spherical (resp. geodesic).

Proof. It is clear that T1 is integrable. We show that T2 is integrable and
geodesic in S.

Consider the tensor J : TF1 × . . . × TFk → TF1 × . . . × TFk given by

J(v1, . . . , vi, . . . , vk) = (−v1, . . . , vi, . . . , −vk),

and take X, V, W ∈ X(S) with X ∈ T1 and V, W ∈ T2. Since ∇J = 0 and
J leaves invariant TFi, we have

0 = (∇V J)(X) = ∇V X − J(∇V X).

Therefore, ∇V X is invariant under J , which means that ∇V X ∈ Fi. Using
that S is umbilical and g(X, V ) = 0, we have ∇V X = ∇S

V X ∈ TS and thus
∇V X ∈ T1. Now, we have

g(∇S
V W, X) = g(∇V W, X) = −g(W, ∇V X) = 0.

Thus, ∇S
V W ∈ T2 for all V, W ∈ T2 which means that T2 is integrable and

geodesic in S.
To see that T1 is umbilic, take X, Y ∈ X(S) with g(X, Y ) = 0 and

X, Y ∈ T1. Since Fi is geodesic, it is easy to show that ∇XY ∈ Fi and
being S umbilic, we have

∇XY = ∇S
XY ∈ Fi ∩ TS = T1.

Therefore the second fundamental form of the leaves of T1 inside M satisfies
I(X, Y ) = 0 for every couple of orthogonal vectors X, Y ∈ T1, which is
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equivalent to be umbilic submanifolds of M . The same argument with the
second fundamental form of T1 as a foliation of S shows that T1 is an umbilic
foliation of S.

To finish point 2, we show that T1 is a regular foliation. Consider the
map Λ : F1 × . . . × Fk → F1 × . . . × Fi−1 × Fi+1 × . . . × Fk given by

Λ(x1, . . . , xk) = (x1, . . . , xi−1, xi+1, . . . , xk)

and i : T2(p) → M the canonical inclusion, where p ∈ S is a fixed point and
T2(p) is the leaf of T2 through p. The map Λ ◦ i is locally injective, since
Ker(Λ ◦ i)∗x

= Fi(x) ∩ T2(x) = 0 for all x ∈ T2(p). Therefore, we can take
a neighborhood U ⊂ S of p adapted to both foliations T1 and T2 ([40, pg.
182]) such that (Λ◦ i)|V is injective, being V the slice of T2(p) in U through
p. Since Λ is constant through the leaves of T1, it follows that U is a regular
neighborhood of p.

Finally, we prove point 3. If S is geodesic, then it is clear that T1 is also
geodesic, so it only remains to show that if S is spherical then so is T1 inside
S.

Suppose that N ∈ X(S)⊥ is the mean curvature vector field of S, ξ ∈ T2
is the one of T1 inside S and H ∈ T ⊥

1 is that of T1 inside M . It is easy to
check that H = ξ + N and since Fi is geodesic, H ∈ Fi.

First we prove that T1 is spherical inside M for which we have to show
that g(∇XH, V ) = 0 for all X ∈ T1 and V ∈ T ⊥

1 . Since S is spherical, given
X ∈ T1 and V ∈ X(S)⊥,

0 = g(∇XN, V ) = g(∇XH, V ) − g(∇Xξ, V ).

Since ξ ⊥ X and S is umbilic, ∇Xξ ∈ X(S) and so g(∇Xξ, V ) = 0.
Hence g(∇XH, V ) = 0 for all X ∈ T1 and V ∈ X(S)⊥. On the other hand,
∇XH ∈ Fi because Fi is geodesic and thus, trivially, g(∇XH, V ) = 0 for
all X ∈ T1 and V ∈ F⊥

i . Since T ⊥
1 = X(S)⊥ + F⊥

i , we can assure that
g(∇XH, V ) = 0 for all X ∈ T1 and V ∈ T ⊥

1 , that is what we wanted to
prove.

Now, we show that T1 is spherical inside S, i.e. g(∇S
Xξ, V ) = 0 for all

X ∈ T1 and V ∈ T2. But a straightforward computation shows that

g(∇S
Xξ, V ) = g(∇Xξ, V ) = g(∇XH, V ) − g(∇XN, V )

= g(∇XH, V ) + g(N, ∇XV )
= g(∇XH, V ) + g(X, V )g(N, N) = 0,

where the last equality holds because X ⊥ V and T1 is spherical inside
M .
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Figure 4.1: S
3 − {N, S} is a spheric submanifold of the euclidean space R

3. Pa-
rallel circles are leaves of the foliation T1 and meridians of T2.

Observe that if S is geodesic then dim TxS∩Fi(x) is constant for all x ∈ S
and all i ∈ {1, . . . , k}. In fact, if x, y ∈ S and α : [0, 1] → S is a curve with
α(0) = x and α(1) = y, then Pα,x,y(TxS) = TyS and Pα,x,y(Fi(x)) = Fi(y)
because they are geodesic. Therefore,

dim
(
TyS ∩ Fi(y)

)
= dim

(
Pα,x,y(TxS) ∩ Pα,x,y(Fi(x))

)

= dim
(
Pα,x,y(TxS ∩ Fi(x))

)
= dim

(
TxS ∩ Fi(x)

)
.

We say that a manifold is decomposable if it can be expressed globally
as a direct product and indecomposable in the contrary case.

Lemma 4.1.2. Let M = F1×. . .×Fk be a complete semi-Riemannian direct
product and F1, . . . , Fk the canonical foliations. Suppose S is a nondege-
nerate foliation with dimension greater that one and invariant by parallel
translation such that Fi(p) ∩ S(p) = {0} for all i ∈ {1, . . . , k} and some
p ∈ M . Then the leaves of S are flat and decomposable.

Proof. Being all foliations invariant by parallel translation, the property
supposed at p is in fact true at any other point of M . Take x = (x1, . . . , xk) ∈
F1 × . . . × Fk and suppose there is a loop αi : [0, 1] → Fi at xi and v ∈ S(x)
such that Pγ(v) 6= v, where γ(t) = (x1, . . . , αi(t), . . . , xk). Since the para-
llel translation along this γ is the identity on Fj(x), j 6= i, if we decom-
pose v =

∑k
j=1 vj ∈ ⊕k

j=1 Fj(x), then Pγ(v) = Pγ(vi) +
∑k

j 6=i vj and so
0 6= v − Pγ(v) = vi − Pγ(vi) ∈ S(x) ∩ Fi(x), which is a contradiction.



Chapter 4. Uniqueness theorems 87

Therefore, Pγ(v) = v for all v ∈ S(x) and all loops γ of the form
γ(t) = (x1, . . . , αi(t), . . . , xk). Since M = F1×. . .×Fk has the direct product
metric, the above property actually holds for an arbitrary loop in M , i.e.
Pγ(v) = v for all v ∈ S(x) and all loop γ at x. In particular, the parallel
translation along any loop of a leaf S of S is trivial and thus we can obtain
a parallel orthonormal frame {E1, . . . Em} in S defining Ei(x) = Pα,p,x(ei),
where {e1, . . . , em} is a frame in p and α any curve in S from p to x. If we
lift this parallel frame to the universal covering S̃, then the De Rham-Wu
theorem ensures that S̃ = R

k where ∂k is identified with Ẽi. But since Ẽi

has to project into Ei, then S splits as a product of m factors of the type
R or S

1.

Let us introduce some notation. Given an arbitrary curve γ : [0, 1] → M
we call vγ : [0, 1] → Tγ(0)M the curve given by

vγ(t) = P −1
γ,γ(0),γ(t)

(
γ′(t)

)
.

We denote by ΩM
p (t1, ..., tm) the set of broken geodesics in M which start at

p and with breaks at ti, where 0 < t1 < ... < tm < 1. If γ ∈ ΩM
p (t1, ..., tm),

then it is easy to check that vγ is a broken constant function,

vγ(t) =






v0 if 0 ≤ t ≤ t1
. . .

vk if tm ≤ t ≤ 1

which we will denote by (v0, ..., vm). On the other hand, given (v0, ..., vm) ∈
(TpM)m+1 we can construct recursively a broken geodesic γ ∈ ΩM

p (t1, ..., tm)
with vγ = (v0, ..., vm) in the following way.

p0 = p, w0 = v0, t0 = 0
pi+1 = exppi

(
wi(ti+1 − ti)

)

wi = Pγ(t),p,pi
(vi)

γ(t) =






expp0(w0
(
t − t0)

)
if 0 ≤ t ≤ t1

. . .
exppk

(
wk(t − tm)

)
if tm ≤ t ≤ 1

Now, suppose that a semi-Riemannian manifold M splits as a direct
product in two different manners, M = F1 × . . . × Fk = S1 × . . . × Sk′ . We
call F1, . . . , Fk and S1, . . . , Sk′ the canonical foliations of each decomposition
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and πi : M → Fi, σi : M → Si will be the projections. Observe that given
a point p ∈ M , the leaf of Fi through p is

Fi(p) = {π1(p)} × . . . × Fi × . . . {πk(p)}

and analogously for Si.
We will denote by Πp

i , Σp
i the projections Πp

i : M → Fi(p), Σp
i : M →

Si(p) given by

Πp
i (x) = (π1(p), . . . , πi(x), . . . , πk(p)),

Σp
i (x) = (σ1(p), . . . , σi(x), . . . , σk′(p))

recpectively. Taking into account the identification M = F1 × . . . × Fk, it
follows that Πp

i (x) = x for all x ∈ Fi(p), and analogously Σp
i (x) = x for all

x ∈ Si(p).

The following theorem state the uniquennes of direct product decom-
positions for nonnecessarily simply connected semi-Riemannian manifolds.
By a semi-euclidean space we refer to a semi-Riemmanian direct product of
one dimensional factors of type R or S

1.

Theorem 4.1.3. Let M = F0 × . . . × Fk be a complete semi-Riemannian
direct product with F0 a maximal semi-euclidean factor and each Fi inde-
composable for i > 0. If M = S0 × . . . × Sk′ is another decomposition with
S0 a maximal semi-euclidean factor and each Sj indecomposable for j > 0
such that Fi(p)∩Sj(p) is zero or a nondegenerate space for some p ∈ M and
all i, j, then k = k′ and, after rearranging, Fi = Si for all i ∈ {0, . . . , k}.

Proof. Since F0 and S0 are a semi-euclidean maximal factors, dimFi > 1
and dimSj > 1 for i, j > 0. Fix x ∈ M and suppose that S1(x) 6= Fi(x) for
all i ∈ {0, . . . , k}. Using the above lemma we have that S1(x) ∩ Fi(x) 6= 0
for some i ∈ {0, . . . , k}. Moreover, since S1(x) 6= Fi(x) it holds 0 6= S1(x) ∩
Fi(x) 6= S1(x) or 0 6= S1(x) ∩ Fi(x) 6= Fi(x). We suppose the first one (the
second case is similar), which actually holds for all point in M because S1
and Fi are invariant under parallel translation.

Proposition 4.1.1 ensures that T1 = Fi ∩ S1 is a regular foliation and,
since S1(x) is a geodesic submanifold, T1 and T2 = T ⊥

1 ∩S1 are two geodesic
and nondegenerate foliations in S1(x). We can choose p ∈ S1(x) such that
the leaf T2(p) of T2 has not holonomy. We want to show that T1(p)∩T2(p) =
{p} and apply corollary 3.2.8. For this, fix an orthonormal basis in TpM ,
take a definite positive metric at p such that this basis is orthonormal too
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and call | · | its associated norm. Given γ ∈ ΩM
p (t1, . . . , tm) with vγ ≡

(v0, . . . , vm) we define |γ| =
∑m

j=0 |vj|(tj+1 − tj).
Suppose there is q ∈ T1(p) ∩ T2(p) with p 6= q. Then it exists a curve in

ΩT2(p)
p (t1, . . . , tm) joining p and q for certain 0 < t1 < . . . < tm < 1 and so

we can define

r = inf{|γ| : γ ∈ ΩT2(p)
p (t1, . . . , tm) and γ(1) = q}.

We prove two facts about this infimum.

• r > 0. Indeed, given a neighborhood p ∈ U ⊂ S1(p), we can get
a δ > 0 small enough such that if γ ∈ ΩS1(p)

p (t1, ..., tm) with |γ| <
δ, then γ lives in U . Therefore, if r = 0, then it would exist γ ∈
ΩT2(p)

p (t1, . . . , tm) with γ(1) = q lying in a neighborhood of p adapted
to both foliations T1 and T2 and regular for T1. But since T1(p) = T1(q)
and γ is a curve is T2(p), the only possibility is p = q, which is a
contradiction.

• r is a minimum. Take a sequence γn ∈ ΩT2(p)
p (t1, . . . , tm) with vγn ≡

(vn
0 , . . . , vn

m), γn(1) = q and |γn| → r. Then we can extract a con-
vergent subsequence of (vn

0 , . . . , vn
m) to, say, (v0, . . . , vm). Take γ0 ∈

ΩT2(p)
p (t1, . . . , tm) with vγ0 ≡ (v0, . . . , vm). Using the differentiable

dependence of the solution respect to the initial conditions and the
parameters of an ordinary differential equation [40, Appendix I], it
is easy to show that γ0(1) = limn→∞γn(1) = q. Since |γ0| = r, the
infimum is reached.

Now, since S1(p) ⊂ M , we can take the map η = Σp
1 ◦ Πp

i : M → S1(p)
(see figure 4.2), which holds the following.

• η|T1(p) = id, because T1(p) ⊂ S1(p) ∩ Fi(p). In particular, η(p) = p
and η(q) = q.

• η∗α(0)
(vα(t)) = vη◦α(t) for any curve α : [0, 1] → M . For this, it is

sufficient to check that η commutes with the parallel translation, i.e.,

η∗α(t)
(Pα,α(0),α(t)(v)) = Pη◦α,η(α(0)),η(α(t))(η∗α(0)

(v)).

But the above follows because M has a direct product metric and
hence the projection Πp

i and Σp
i of a parallel vector field is again a

parallel vector field.
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Figure 4.2: The image by η of a point x ∈ M for the case k = k′ = 2.

• η(T2(p)) ⊂ T2(p). Since Πp
i∗p

and Σp
1∗p

are simply the projection onto
Fi(p) and S1(p) respectively, given v ∈ T1(p) and w ∈ T2(p) we have

g(η∗p
(w), v) = g

(
Σp

1∗p
(Πp

i∗p
(w)), v

)
= g

(
Πp

i∗p
(w), v

)
= g(w, v) = 0.

Therefore, η∗p
(T2(p)) = T2(p). Take now a point x ∈ T2(p) and

γ ∈ ΩT2(p)
p (t1, . . . , tm) a broken geodesic with γ(1) = x. Since η is

the composition of two canonical projections, it takes geodesics into
geodesics and thus η ◦ γ is a broken geodesic. Moreover, using the
above point, if vγ = (v0, . . . , vm), then vη◦γ = (η∗p

(v0), . . . , η∗p
(vm)).

Since T2(p) is a geodesic submanifold and η∗p
(vi) ∈ T2(p), we have

η ◦ γ ∈ ΩT2(p)
p (t1, . . . , tm) and, in particular, η(x) ∈ T2(p).

• |η∗p
(v)| ≤ |v| and the equality holds if and only if v ∈ T1(p). As

before, just take into account that Πp
i∗p

and Σp
1∗p

are the projection
onto Fi(p) and S1(p) respectively.

Take γ0 ∈ ΩT2(p)
p (t1, . . . , tm) with |γ0| = r and γ(1) = q and consider

α = η ◦ γ0 ∈ ΩT2(p)
p (t1, . . . , tm). If vγ = (v0, . . . , vm), we know that vα =

(η∗p
(v0), . . . , η∗p

(vm)) and therefore |α| < |γ0|. But this is a contradiction
because r is the minimum.

Therefore T1(p) ∩ T2(p) = {p} and applying theorem 3.2.5, S1(p) can
be decomposed as T1(p) × T2(p), which is a contradiction because S1 is
indecomposable. The contradiction comes from supposing that S1(x) 6=
Fi(x) for all i ∈ {0, . . . , k}, thus it has to hold, for example, that S1(x) =
F1(x) (observe that S1 6= F0 because S0 and F0 are semi-euclidean maximal
factors). But this means S1 = F1 and so S1 = F1.
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Applying repeatedly the above reasoning we can eliminate the factors
with dimension greater than one, except S0, in the decomposition S0 × . . .×
Sk′ , reducing the problem to prove the uniqueness of the decomposition
of a semi-Riemannian direct product S0 × S

1 × . . . × S
1, where S0 is semi-

euclidean. But, in this product, we can trivially change the metric to obtain
a Riemannian direct product where we can apply [20].

Observe that the nondegeneracy hypothesis is redundant in the Rieman-
nian case. On the contrary, in the semi-Riemannian case it is necessary as
this example shows.

Example 4.1.4. Take L a complete and simply connected Lorentzian ma-
nifold with a parallel lightlike vector field U , but such that L can not be
decomposed as a direct product, (for example a plane fronted wave, [14]).
Take M = L × R with the product metric and X = U + ∂t. Then X is a
spacelike and parallel vector field and since M is complete and simply con-
nected, M splits as a direct product with the integral curves of X as a factor.
Thus M admits two different decomposition as direct product, although L is
indecomposable.

As a corollary, we obtain the uniqueness in the Riemannian case, which
was first proved in [20] using a short generating set of the fundamental group
in the sense of Gromov. This concept is based strongly in the Riemannian
distance and so it is not valid in the semi-Riemannian case

Corollary 4.1.5 ([20]). Let M = F0 × . . . × Fk be a complete Riemannian
direct product with F0 a maximal euclidean factor and each Fi indecompos-
able for i > 0. If M = S0 × . . . × Sk′ is another decomposition with S0 a
maximal euclidean factor and each Sj indecomposable for j > 0, then k = k′

and, after rearranging, Fi = Si for all i ∈ {0, . . . , k}.

We finish this section with a classification result for warped products
with two different decompositions.

Corollary 4.1.6. Let (M, g) = (F1 × F2, g1 + f2g2) be a complete semi-
Riemannian warped product with (F1, f−2g1) complete and dimension greater
than one. If M = S1 ×h S2 is another warped product decomposition such
that f/h is constant and S1(p) ∩ F1(p) is a nondegenerate space for some
p ∈ M , then M is isometric to a warped product L ×f (N × P ).



92 4.2. Generalized Robertson-Walker decompositions

Proof. Take the conformal metric g∗ = f−2g, which decomposes M as a
complete direct product (F1 × F2, f−2g1 + g2). Using that S1 is geodesic in
(M, g), ∇ ln f = ∇ ln h ∈ S1 and that the connection of g∗ is given by

∇∗
XY = ∇XY − X(ln f)Y − Y (ln f)X + g(X, Y )∇ ln f,

we can check that S1 is a geodesic foliation in (M, g∗). On the other hand,
if V, W ∈ S2 then

(∇∗
V W )S1 = (∇V W )S1 + g(V, W )∇ ln f

= −g(V, W )∇ ln h + g(V, W )∇ ln f = 0,

where we have used the decomposition M = S1 ×h S2 to compute (∇V W )S1 .
Therefore, S2 is also geodesic in (M, g∗) and so it admits another direct
product decomposition S1 × S2 (observe that this decomposition is global
because it was before).

If we call T1 = F1 ∩ S1, since f is not constant and ∇ ln f = ∇ ln h ∈ T1,
we can suppose T1(p) is nonzero and nondegenerate for some p ∈ M .

Now, we have two possibilities: if T1(p) 6= F1(p), using the (proof) of
the above theorem, we have that (F1, f−2g1) is decomposable as a direct
product (T1 × T2, h1 + h2) and moreover f only depends on T1 because
∇f ∈ T1. Therefore, (M, g) splits as a warped product T1 ×f (T2 × F2).

If T1(p) = F1(p), since by hypothesis S1 6= F1, it holds 0 6= F2 ∩S2 6= F2
and as before, (F2, g2) can be decomposed as a direct product, obtaining
the same conclusion.

4.2 Generalized Robertson-Walker decompo-
sitions

We know that in a GRW decomposition R ×f L the vector field f ∂
∂t

is
timelike, closed and conformal. Conversely, the unitary of a timelike, closed
and conformal vector field is a warped reference frame and therefore it gives
rise to a local GRW decomposition. Thus, to deal with the uniqueness of
(local) GRW decompositions, it is sufficient to study how many timelike,
closed and conformal vector fields can exist on a Lorentzian manifold, up
to scalar multiplication.

Example 4.2.1. The De Sitter space S
n
1 (r) = {p ∈ R

n+1
1 : 〈p, p〉 = r2} is

an isotropic and homogeneous GRW space and so it can be easily deduced
that it admits different timelike, closed and conformal vector fields. In fact,
they are given by Vp = p0 − 〈p0,p〉

r2 p, where p0 ∈ R
n+1
1 is a fixed point with
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〈p0, p0〉 = −1, and the different decompositions that they produce are R ×f

S
n−1(µ) where f(t) = r

µ
cosh(1

r
t + b) with r, µ ∈ R

+ and b ∈ R.

Above example is the only complete one with different GRW decom-
positions. Moreover, we can show that the sign of the lightlike sectional
curvature is an obstruction for the existence of more than one local GRW
decomposition. Before proving these facts, we need the following lemma.

Lemma 4.2.2. Let M be a complete Riemannian manifold with n ≥ 2 and
V a closed and conformal vector field. Call U its unitary and A = {p ∈
M : λ(p) 6= 0}, where λ = |V |. If the equation U(U(λ)) = −c2λ holds in A
for certain c ∈ R, then M is isometric to a sphere S

n(1
c
).

Proof. It is known that V has at most two zeroes, [58]. Suppose ∇V = a·id.
Then ∇a = U(a)U = U(U(λ))U = −c2λU = −c2V and Hessa = −c2a g in
M . Using [58, Theorem 2.III], we conclude that M is a sphere of curvature
c2.

Theorem 4.2.3. Let M be a Lorentzian manifold with n ≥ 3 and V a
timelike, closed and conformal vector field. If there exists another closed
and conformal vector field W , without zeros and linearly independent to V
at a point p ∈ M , then

1. There exists some degenerate plane Π of TpM such that K(Π) = 0.

2. If V is not parallel and M is complete, then it is isometric to a De
Sitter space.

Proof.

1. Since W is closed and conformal, ∇W = b · id for certain b ∈ C∞(M).
Suppose W = αU + X, where U = V

|V | and X ∈ U⊥ and call λ2 =
−g(V, V ), σ2 = g(X, X), A = {p ∈ M : σ(p) 6= 0} and F = X

σ
, which

is a vector field defined in A.

Using the expresion for ∇U given in lemma 2.1.1, we have

∇UX = ∇U(W − αU) = (b − U(α))U,
∇XX = ∇X(W − αU) = (b − αU(ln λ)) X − X(α)U.

But g(∇UX, U) = U(g(X, U)) = 0, so b = U(α) and ∇UX = 0.

If we take derivative along X in σ2 = g(X, X), then we have 2σF (σ) =
2g(∇XX, X) and replacing ∇XX we get

F (σ) = b − αU(ln λ) = U(α) − αU(ln λ). (4.1)
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On the other hand,

F (α) = −F (g(W, U)) = −g(∇F W, U) − g(W, ∇F U)
= −σU(ln λ). (4.2)

Now, U(σ2) = 2g(∇UX, X) = 0 and therefore

[U, λF ] = ∇UλF − ∇λF U = U(λ)F + λ (∇UF − ∇F U)
= U(λ)F − λU(ln λ)F = 0.

In particular, it holds

U(λF (α)) = λF (U(α)), (4.3)

but using equation 4.2, the first term can be writtten as

U(λF (α)) = −U(λσU(ln λ)) = −σ
U(λ)2

λ
− λσU(U(ln λ)),

and using equation 4.1, equation 4.2 and the fact that U(ln λ) is con-
stant through the orthogonal leaves of U (lemma 2.1.1), the second
term is

λF (U(α)) = λF (F (σ) − αU(ln λ)) = λF (F (σ)) + λF (α)U(ln λ)

+ λαF (U(ln λ)) = λF (F (σ)) − σ
U(λ)2

λ
.

Therefore, equation 4.3 is equivalent to

F (F (σ)) = −σU(U(ln λ)). (4.4)

Now, take p ∈ A and call λ(t) = λ(γ(t)) and σ(s) = σ(ζ(s)), where
γ is the integral curve of U and ζ of F through p. Applying theorem
2.1.6, M is locally isometric to

(
(−ε, ε) × Lp, −dt2 +

(
λ(t)
λ(0)

)2

g|Lp

)
,

where Lp is the orthogonal leaf of U through p and ∂
∂t

identified with
U . But it is easy to show that X is closed and conformal in Lp, so it
is locally isometric to

(
(−δ, δ) × Sp, ds2 +

(
σ(s)
σ(0)

)2

g|Sp

)
,
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where Sp is the orthogonal leaf of X through p and ∂
∂s

is identified
with F . Consider the degenerate plane Π = span(−Up + Fp, v), where
v is a unitary vector orthogonal to Up and Fp. From lemma 2.4.3,

KU(Π) = KLp(span(v, X)) − (ln λ)′′(0),

but the curvature formulas for a warped product gives us

KLp(span(v, X)) = −σ′′(0)
σ(0)

and from equation 4.4 we know (ln λ)′′(0) = −σ′′(0)
σ(0) . Therefore we

have KU(Π) = 0.

2. Suppose now that M is complete. We have γ(t) ∈ A for all t ∈ R

because U(σ) = 0 and thus σ(γ(t)) is a constant for all t ∈ R which
we call σ0. Moreover, since [U, λF ] = 0,

d
dt

λF (λF (σ))γ(t) = U (λF (λF (σ)))γ(t) = λF (λF (U(σ)))γ(t) = 0,

and so there is a constant c such that λF (λF (σ))γ(t) = c. But, being
F (λ) = 0, we get F (F (σ))γ(t) = c

λ(t)2 for all t ∈ R. Now, using
equation 4.4,

(ln λ)′′(t) = U(U(ln λ))γ(t) =
F (F (σ))γ(t)

σ0
=

c
σ0λ(t)2 ,

and therefore
λ2(ln λ)′′ = k, (4.5)

where k = c
σ0

. The solutions of this differential equation are

• If k < 0, then λ(t) =
√

−kt + b, λ(t) = sinh(±
√

−kat+b)
a

or λ(t) =
cos(±

√
−kat+b)
a

.

• If k = 0, then λ(t) = exp(at + b).

• If k > 0 then, λ(t) = cosh(
√

kat+b)
a

.

Since M is complete, we can discard the case k ≤ 0, [55], and suppose
k > 0. In this case, λ(t) = λ(γ(t)) is not periodic and γ can not return
to Lp because λ is constant through Lp. Therefore, the covering map
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Figure 4.3: Red lines are integral curves of V and blue ones are its orthogonal
leaves.

of theorem 2.1.6 is in fact an isometry and M is the GRW space
R × λ(t)

λ(p)

Lp.

Now, since U(U(ln λ)) is constant through Lp (lemma 2.1.1), given
any q ∈ Lp we have

F (F (σ))q = −σ(q)U(U(ln λ))q = −σ(q)U(U(ln λ))p = − k
λ(p)2 σ(q)

and lemma 4.2.2 says that Lp is an euclidean sphere of curvature
k

λ(p)2 . Comparing the warped function with that of example 4.2.1, M
is isometric to the De Sitter space of constant curvature a2k.

In the case dim M = 2, M complete and V nonparallel, the orthogonal
leaves of V are trivially isometric to (R, dx2) or (S1, dx2). We can obtain
as in the above proof that λ(t) = cosh(

√
kat+b)
b

and therefore M is isometric
to the two dimensional De Sitter space or its universal covering, the De
Sitter plane. Figure 4.3 shows another global decomposition of the De
Sitter plane (R2, −dt2 + cosh(t)2dx2) induced by the timelike, closed and
conformal vector field V (t, x) =

(
− sinh(t) sin(x) + 3 cosh(t)

)
∂
∂t

+ cos(x)
cosh(t)

∂
∂x

.

The completeness hypothesis in theorem 4.1.3 (2) is necessary as is
shown by the following example.
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Example 4.2.4. Take (L, g0) any Riemannian manifold and consider M =
(0, ∞) × R × L with metric g = −dt2 + t2(ds2 + e2sg0). The vector fields
t ∂

∂t
and (t − es) ∂

∂t
+ es

t
∂
∂s

are closed and conformal. Observe that the second
vector field is not timelike on all the spacetime

We finish this section with an application to the Friedmann cosmological
models M(k, f) (we follow the notation of [48]).

Corollary 4.2.5. The Friedmann models admit a unique GRW decomposi-
tion, even locally.

Proof. In M(k, f) holds the Friedmann equation f ′2 + k = A
f

, where A > 0
is a constant. Differentiating, where f ′ 6= 0 we have f ′′f = − A

2f
, and using

lemma 2.4.3

K ∂
∂t

(Π) =
k + f ′2 − f ′′f

f2 =
A

2f3 > 0

for any degenerate plane Π.
If f ′ = 0 at some point, then f ′′ ≤ 0 at this same point and necessarily

k > 0. So, it immediately follows that K∂t
(Π) > 0 for any degenerate plane

at any point where f ′ = 0. In any case, the lightlike sectional curvature
never vanishes and we can apply theorem 4.2.3.

4.3 Killing vector fields in a static manifold

Before tackle the uniqueness of static decompositions, we study in this sec-
tion killing vector fields in a static manifold L ×εf R, being ε = ±1.

By π : L × R → L we denote the canonical projection, although we
usually avoid it to lighten the notation, and given V ∈ X(L × R) we call
V t

p = π∗(p,t)(V ), which is a vector field on L for each t ∈ R. Fixed p ∈ L, V t
p is

a curve in TpL and thus we can consider the vectorial derivative d
dt

V t
p ∈ TpL,

obtaining in this way another uniparametric family of vector fields on L.
If a ∈ C∞(L × R), we denote by at the derivative respect to t and at the

function on L given by a(·, t).
Recall that we denote by the same letter the lift to L × R of a vector

field on L.

Proposition 4.3.1. Let M = L×εf R be a static manifold and V = a∂t+W ,
where a ∈ C∞(M) and W ∈ X(M) with W ⊥ ∂t. Then V is a killing vector
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field if and only if V t is a killing vector field on L for each t ∈ R and the
following equations hold

d
dt

V t = −εf 2∇Lat, (4.6)

V t(ln f) = −at. (4.7)

Proof. Since L × {t} is a geodesic hypersurface of M , it is straightforward
that V t is a killing field on L for all t ∈ R. We state equations 4.6 and 4.7.

Given X ∈ X(L), from g(∇∂t
V, X) = −g(∇XV, ∂t), we get

ag(∇∂t
∂t, X) + g(∇∂t

W, X) =
− εf 2X(a) − ag(∇X∂t, ∂t) − g(∇XW, ∂t).

Since ∂t is Killing and g(∇XW, ∂t) = −g(W, ∇X∂t) = 0, the above simplifies
to

g(∇∂t
W, X) = −εf 2X(a).

We compute each term at a point (p0, t0) ∈ L × R. The projection π :
L × {t0} → L is an isometry, so we have

g(∇∂t
W, X)(p0,t0) = ∂t|(p0,t0)g(W, X) =

d
dt

g(W, X)(p0,t)|t=t0 =

d
dt

g
(
π∗(p0,t)(W ), Xp0

)
|t=t0 =

d
dt

g
(
W t

p0
, Xp0

)
|t=t0 =

g
(

d
dt

W t
p0

|t=t0 , Xp0

)
= g

(
d
dt

V t
p0

|t=t0 , Xp0

)
.

On the other hand, if γ is an integral curve of X, then

X(a)(p0,t0) =
d
dt

a(γ(t), t0)|t=t0 =
d
dt

at0(γ(t))|t=t0

= Xp0(a
t0) = g(∇at0 , Xp0).

Therefore, d
dt

V t = −εf 2∇Lat for all t ∈ R.
Now, from g(∇∂t

V, ∂t) = 0 it follows g(∇∂t
W, ∂t) = −εf 2at. But

g(∇∂t
W, ∂t) = −g(W, ∇∂t

∂t) = εfg(W, ∇f)
= εfW t(f) = εfV t(f),

and therefore V t(ln f) = −at for all t ∈ R. The “only if” part is clear.
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Definition 4.3.2. An irrotational and killing vector fied is called static.

To prove the following theorem, we need an analogue to proposition
2.1.6.

Proposition 4.3.3. Let M be a complete Lorentzian or Riemannian ma-
nifold of dimension greater than one. If V is a static vector field without
zeros (timelike in the Lorentzian case), then there exists a normal semi-
Riemannian covering map Φ : L ×εf R → M where L is an orthogonal leaf
of V and Φ∗(∂t) = V .

Proof. Take Φ : M × R → M the flow of V , L an orthogonal leaf and
consider the restriction Φ : L × R → M . Since V is killing, Φt : M → M is
an isometry for all t ∈ R which preserves V and so it is foliated. Therefore,
we can show as in the proof of proposition 2.1.4 that it is a normal semi-
Riemannian covering map with the pull-back metric Φ∗(g). We show that
this metric is static. If v ∈ TpL ≺ TpM then

|(vp, 0t)| = |(Φt)∗p
(vp)| = |vp| = |Φ∗(p,0)

(vp)| = |(vp, 00)|,

where we have taken into account that Φ|L×{0} = id.
On the other hand, if we call f(p, t) = |Vσ(p,t)|, then f(p, t) = f(p, 0) and

therefore we can conclude that Φ∗(g) = g|L + εf 2dt2, where ε is the sign of
V .

Both the above as proposition 2.1.6 can be viewed as particular cases of
theorem 3.2.5. Observe that, in proposition 4.3.1, being d

dt
V t the vectorial

derivative of V t, it is also a killing vector field. This fact is the key to prove
the following theorem.

Theorem 4.3.4. Let M = L ×εf R be a static manifold with L complete.
If V ∈ X(M) is a killing vector field, then one of the following holds.

1. V = (a1t + a2)∂t + W where a1, a2 ∈ R and W ∈ X(L) is a killing
vector field with W (ln f) = −a1.

2. L decomposes as a static manifold (N × R, gN + λ(x)2ds2) and f(x, s) =
λ(x)c(s) for certain c ∈ C∞(R).

Proof. Decompose V = a∂t + W where a ∈ C∞(M) and W ⊥ ∂t. Using
proposition 4.3.1, V t is a killing field on L and d

dt
V t = −εf 2∇Lat. Therefore,

d
dt

V t is a static vector field for each t ∈ R .
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Fix t ∈ R, take γ a geodesic in L with γ(0) = p and call y(s) = at(γ(s)).
Then ys = g(∇Lat, γ′) and

yss = g(∇L
γ′∇Lat, γ′) = ε

2(f ◦ γ)s

(f ◦ γ)3 g
(

d
dt

V t, γ′
)

= −2(f ◦ γ)s

f ◦ γ
g(∇Lat, γ′)

= −2(ln f ◦ γ)sys.

Therefore, ys(s) = ys(0)
(

f(p)
f(γ(s))

)2
. If d

dt
V t

p = 0 then ys ≡ 0 and at is
constant in a neighborhood of p, which implies that d

dt
V t = 0 in this same

neighborhood. Since L is supposed connected, for each t ∈ R there are two
possibilities: d

dt
V t ≡ 0 or it does not have any zero.

If d
dt

V t ≡ 0 for all t ∈ R, then V = a∂t + W where W ∈ X(L) is a
killing field. Moreover, by equation 4.6, a only depends on t and equation
4.7 implies that there is a constant a1 ∈ R with at = −W (ln f) = a1, from
which the first assertion follows.

Suppose on the contrary that there is some t0 ∈ R such that d
dt

V t0 has
not zeros. If α : R → L is an integral curve of d

dt
V t0 , then d

ds
at0(α(s)) 6= 0

for all s ∈ R. Therefore, since a is constant through the orthogonal leaves
of d

dt
V t0 , α only intersects them one time and proposition 4.3.3 ensures

that L decomposes as a static manifold N ×λ R, where ∂s = d
dt

V t0 . Since
∂s = −εf 2∇at0 , then at0 only depends on s and a direct computation gives
us ∇at0 = a

t0
s

λ2 ∂s. Replacing in the above equation, f 2 = −ε λ2

a
t0
s

and thus

f(x, s) = λ(x)c(s), where c(s) =
√

−ε

a
t0
s

.

In this theorem, as in other results in the next section, when L is one
dimensional the factor N is a point and therefore can be removed. We show
now a couple of corollaries which gives us more accurate information about
killing vector fields under an extra hypothesis.

Corollary 4.3.5. If M = L×εf R is a static manifold with L compact, then
any killing vector field is of the form a∂t + W̃ where a ∈ R and W ∈ X(L)
is a killing vector field with W (f) = 0.

Proof. Since L is compact, only the first case of the above theorem holds.
Moreover, f must have a critical point and so a1 = 0.

Lightlike sectional curvature also will be useful, so we compute it.

Lemma 4.3.6. Let M = L ×−f R be a static space and take v, w ∈ TL
unitary vectors with v ⊥ w. If Π = span(v, u), where u = w − 1

f
∂t, then

Ku(Π) = KL (span(v, w)) +
g(∇v∇f, v)

f
.
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Proof. We have

Ku(Π) = g(R(v, u, u), v) = g(R(v, w, w), v) − 2
g(R(v, w, ∂t), v)

f

+
g(R(v, ∂t, ∂t), v)

f 2 ,

but using the curvature formulas of a warped product,

g(R(v, w, w), v) = KL (span(v, w)) ,
g(R(v, w, ∂t), v) = 0,
g(R(v, ∂t, ∂t), v) = fg(∇v∇f, v).

Corollary 4.3.7. Let M = L ×−f R be a static space with L complete
and dimension greater than one. If there is a point (p0, t0) ∈ M such that
K(Π) 6= 0 for any degenerate plane Π of T(p0,t0)M , then any killing vector
field is of the form (a1t + a2)∂t + W , where a1, a2 ∈ R and W ∈ X(L) is a
killing vector field with W (ln f) = −a1.

Proof. Suppose that L can be decomposed as (N × R, gN + λ(x)2ds2), being
p0 identified with (x0, s0), and f(x, s) = λ(x)c(s). Take a unitary vector v ∈
Tx0N and Π the degenerate plane spanned by v and u = 1

λ(x0)∂s − 1
f(s0,x0)∂t.

We know that Ku(Π) = KL (span(v, ∂s)) + g(∇v∇f,v)
f

, but being L also a
static manifold,

KL (span(v, ∂s)) = −g(∇v∇λ, v)
λ

,

g(∇v∇f, v) = cg(∇v∇λ, v).

Thus Ku(Π) = 0, which is a contradiction. Applying Theorem 4.3.4 we get
the conclusion.

Finally, we characterize static vector fields in a static manifold.

Proposition 4.3.8. Let M = L×εf R be a static manifold. If V = a∂t+W ,
where a ∈ C∞(M) and W ⊥ ∂t, is a static vector field, then V t is a static
vector field on L for each t ∈ R. Moreover, if dim L ≥ 2, in the open set
{p ∈ L : at 6= 0, V t 6= 0} it holds

X
(
ln(atf)

)
= X

(
ln

√
g(V t, V t)

)
(4.8)

for all X ∈ X(L) with X ⊥ V t.
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Proof. The first assertion follows easily because L × {t} are geodesic hy-
persurfaces. Suppose that dimL ≥ 2 and take ξ = −εg(W, W )∂t + af 2W ,
which is a vector field orthogonal to V . Since V is static, g(∇XV, ξ) = 0 for
all X ∈ X(L) with X ⊥ W . But

g(∇XV, ξ) =
(
X(a) + aX(ln f)

)
g(∂t, ξ) + g(∇XW, ξ) =

= −
(
X(a) + aX(ln f)

)
f 2g(W, W ) +

af 2

2
X (g(W, W ))

= −
(
X(at) + atX(ln f)

)
g(V t, V t)f 2 +

atf2

2
X

(
g(V t, V t)

)
.

Therefore
(
X(at)+atX(ln f)

)
g(V t, V t) = at

2 X(g(V t, V t)). Where at 6= 0
and V t 6= 0, we can write

X
(
ln(atf)

)
= X

(
ln

√
g(V t, V t)

)
.

4.4 Static decompositions

As it can be easily checked, euclidean, Minkowski, hyperbolic and the por-
tion of the anti De Sitter space given by

(

R
n, dx2

1 + e2x1

(
n−1∑

i=2

dx2
i − dx2

n

))

admit different static decompositions. It is a remarkable fact that, although
hyperbolic space admits a global decomposition as a static manifold, namely

H
n =

(

R
n, dx2

1 + e2x1

(
n∑

i=2

dx2
i

))

,

the anti De Sitter space does not.
In this section we will show many spaces with different static decom-

positions besides above ones and we classify them under certain curvature
hypothesis.

Definition 4.4.1. A static vector field without zeros (being timelike in the
Lorentzian case) is called standard static if it gives rise to a global static
decomposition of the manifold.
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Therefore, to study the uniqueness of static decompositions it is sufficient
to study standard static vector fields. We start showing that if a static
manifold has another decomposition, then the base decomposes itself a static
manifold.

Proposition 4.4.2. Let M = L ×εf R be a static manifold with L complete
and V a static vector field linearly independent to ∂t at some point. Then
it holds the following.

1. For each t ∈ R, V t is identically zero or it does not have zeros. In
fact, there exists a dense open subset Θ ⊂ R such that the second
statement holds for all t ∈ Θ.

2. If moreover V is standard, then V t is standard in L for each t ∈ Θ.
So, fixed t ∈ Θ, L decomposes as (N × R, gN + λ(x)2ds2) where V t is
identified with ∂s.

Proof.

1. Fixed t ∈ R, call A = {p ∈ L : V and ∂t are l.i. at (p, t) } and
B = Ac. It is clear that A is open and since the orthogonal leaf of V
and ∂t are geodesic, B is also open. Therefore, A = L and thus V t

does not have zeros or B = L and V t ≡ 0. Now, call Θ = {t ∈ R :
V t does not have zeros}, which obviously is open. If V t ≡ 0 for all
t ∈ (−δ, δ), then V and ∂t are linearly dependent in L × (−δ, δ), but
since they are killing vector fields, they must be linearly dependent in
the whole M , which is a contradiction. Therefore Θ is dense.

2. Given t ∈ Θ, using the above point and proposition 4.3.8, we know
that V t is a static vector field without zeros in L. We show that it
gives rise to a global decomposition. Call F(p,t) the orthogonal leaf of
V through (p, t) and N the orthogonal leaf of V t through p, which
is inside π

(
L × {t} ∩ F(p,t)

)
. Take α an intergral curve of V t with

α(0) ∈ N and suppose that there is s > 0 with α(s) ∈ N . Since V
is standard, there is a global projection P : M → R such that it is
constant through the orthogonal leaves of V and P∗(p,t)

(v) gives the
component in the direction of V(p,t) of any vector v ∈ T(p,t)M . If we
call γ(s) = (α(s), t), then P (γ(s)) has a critical point s1 ∈ (0, s),
because γ(0), γ(s) ∈ F(p,t). But then

g
(
V t

α(s1), V t
α(s1)

)
= g

(
γ′(s1), Vγ(s1)

)
=

P∗γ(s1)
(γ′(s1)) g

(
Vγ(s1), Vγ(s1)

)
= 0,
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which is a contradiction. Using proposition 4.3.3, L can be decom-
posed as (N × R, gN + λ(x)2ds2), where ∂s is identified with V t.

As a consequence of the above proposition, we have obtained the main
result of [56] in a different way.

Theorem 4.4.3 ([56]). Let M = L ×εf R be a static manifold with L
compact. Then any other standard static vector field is proportional to ∂t

and so M admits a unique decomposition as a static manifold.

The following proposition will be the key to prove our main results.
Recall the definition of R

2
[ε], H

2
[ε] and Ĥ

2
[ε] given in page 19.

Proposition 4.4.4. Let M = L ×εf R be a static manifold with L complete
and V a standard static vector field linearly independent to ∂t at a point
(p0, t0). If V t is proportional to V t0 for all t ∈ R, then M is isometric to
one of the following.

1. (N × R
2, gN + λ(x)2ds2 + εf(x)2dt2) and V = ∂s.

2.
(

N × H
2
[ε](r), gN + λ(x)2(ds2 + ε cosh2(rs)dt2)

)
and

V =
(

−ε
r

ht(t) tanh(rs) + γ
)

∂t + h(t)∂s,

where h(t) = α sin(rt + β) if ε = −1 or h(t) = αert + βe−rt if ε = 1
and α, β, γ ∈ R.

3.
(

N × Ĥ
2
[ε](r), gN + λ(x)2(ds2 + εe2rsdt2)

)
and

V =
(εα

2r
e−2rs − rα

2
t2 − rβt + γ

)
∂t + (αt + β)∂s,

where α, β, γ ∈ R

4.
(

N × R
2
[ε], gN + λ(x)2(ds2 + εdt2)

)
and V = γ∂t + ∂s, where γ ∈ R.

Proof. Suppose that V t = h(t)V t0 for some h ∈ C∞(R) with h(t0) = 1.
Proposition 4.4.2 ensures that L decomposes as (N × R, gN + λ(x)2ds2)
where ∂s is identified with V t0 .
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If X ∈ X(N), using equation 4.6 we get g(X, ∇at) = 0 and thus a only
depends on s and t. On the other hand, multiplying by V t0 in equation 4.6
we get

as(t, s) = −ε
ht(t)λ(x)2

f(x, s)2 , (4.9)

and equation 4.7 can be written as

at(s, t) = −h(t)(ln f)s. (4.10)

Now we consider two possibilities:
1) a ≡ 0. Then above equations give us that h ≡ 1 and f only depends

on x, i.e., M is isometric to (N ×R
2, gN +λ(x)2ds2 +εf(x)2dt2) and V = ∂s.

2) There is a point (s0, t0) with a(s0, t0) 6= 0. Take

A = {(s, t) ∈ R
2 : a(s, t) 6= 0}.

Equation 4.8 reduces to X(ln f) = X(ln λ) in N × A for all X ∈ X(N),
which implies that there is certain function c such that f(x, s) = λ(x)c(s)
for all (x, s, t) ∈ N × A.

Take B =
(
A

)c. If B = ∅, then by continuity f(x, s) = λ(x)c(s) for all
(x, s, t) ∈ N × R

2. If B 6= ∅, then a ≡ 0 in N × B and so f only depends on
x, i.e. f(x, s) = F (x) for all (x, s, t) ∈ N × B where F is certain function.
Since λ(x)c(s) = F (x) for all (x, s, t) ∈ Fr(N × A) = N × Fr(A), it it easy
to show that c can be extended to the whole R and, with this extension, it
holds f(x, s) = λ(x)c(s) for all (x, s) ∈ N × R

2.
If we call S = R ×εc R, then M is the warped product N ×λ S. We now

classify this surface S. Equations 4.9 and 4.10 reduce to

as = −ε
ht(t)
c(s)2 ,

at = −h(t) (ln c(s))s ,

and using the Schwarz’s Theorem we get the differential equations

css(s)c(s) − cs(s)2 = k, (4.11)
htt(t) = εkh(t)

for some constant k ∈ R. The solutions of 4.11 are

• c(s) =
√

−k
r

sinh(rs + b) or c(s) =
√

−k
r

sin(rs + b) if k < 0.

• c(s) = ers+b if k = 0.
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• c(s) =
√

k
r

cosh(rs + b) if k > 0.

Since c(s) > 0 for all s ∈ R we can discard the case k < 0. In the case
k > 0, solving the above differential equations, there are α, β, γ ∈ R such
that

V =
(

rα√
k

cos(
√

kt + β) tanh(rs + b) + γ
)

∂t + α sin(
√

kt + β)∂s

if ε = −1 or

V =
(

− r√
k

(
αe

√
kt − βe−

√
kt

)
tanh(rs + b) + γ

)
∂t +

(
αe

√
kt + βe−

√
kt

)
∂s

if ε = 1. Now, we obtain point (2) rescaling with ̺ : R
2 → R

2 given by
̺(s, t) = (s + b

r
,

√
k

r
t).

If k = 0, we can suppose b = 0 rescaling s, and thus c(s) = ers with
r 6= 0 or c(s) = 1. In the first case, S = Ĥ

2
[ε](r) and

V =
(εα

2r
e−2rs − rα

2
t2 − rβt + γ

)
∂t + (αt + β)∂s.

In the second case S = R
2
[ε], a(s, t) = −εαs + γ and h(t) = αt + β. But

α = 0 and β = 1 because V does not have zeros and h(t0) = 1.

The case N ×λ H
2(r) and N ×λ Ĥ

2(r) are equivalent since H
2(r) and

Ĥ
2(r) are isometric spaces. However, N ×λ H

2
[−1](r) and N ×λ Ĥ

2
[−1](r) are

not equivalent because H
2
[−1](r) is complete and Ĥ

2
[−1](r) is not.

As an immediate consequence of the above proposition, we obtain the
following.

Corollary 4.4.5. Let M = L ×εf R be a complete two dimensional static
manifold. If there exists V a non-identically zero killing vector field linearly
independent to ∂t at some point, then M is isometric to R

2
[ε] or H

2
[ε](r).

Proof. Since dimL = 1, V is also irrotational, V t is linearly dependent to
a fixed V t0 for all t ∈ R and the proof of proposition 4.4.4 works with N
reduced to a point, although V is not necessarily standard and, maybe, with
zeros.

Now, we show that a manifold with more than one static decomposition
is a particular type of warped product.
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Proposition 4.4.6. Let M = L×εf R be a static manifold with L complete.
If there exists V a standard static vector field linearly independent to ∂t at
some point, then M decomposes as (N ×R

2, gN +λ(x)2ds2 +εf(x)2dt2) and
V = ∂s or L decomposes as (N × R, gN + λ(x)2ds2) and f(x, s) = λ(x)c(s),
i.e., M is the warped product N ×λ (R ×c R).

Proof. Using theorem 4.3.4, M decomposes as a warped product N ×λ

(R ×c R) or V = (a1t + a2)∂t + W where a1, a2 ∈ R and W ∈ X(L). But in
this last case, we can apply proposition 4.4.4 to obtain that M may also be
decomposed as (N × R

2, gN + λ(x)2ds2 + εf(x)2dt2) and V = ∂s or again as
N ×λ (R ×c R).

We can easily check that this proposition holds for euclidean, Minkowski,
hyperbolic and the piece of the anti De Sitter space given at the beggining
of this section looking to the metric of these spaces.

Corollary 4.4.7. Let M = L ×ε R be a static manifold with L complete
and constant warping function. If V is a standard static vector field which
is linearly independent to ∂t at some point, then M is isometric to (N ×
R

2, gN + λ(x)2ds2 + εdt2) where V = ∂s or to a direct product N × R
2
[ε].

We are already able to classify, under a curvature hypothesis, manifolds
with more than one static decomposition. We start assuming that the base
has a point with positive sectional curvature.

Theorem 4.4.8. Let M = L ×εf R be a static manifold with L complete
and dimension greater than one. Suppose that there exists a standard static
vector field V linearly independent to ∂t at some point and there is p ∈ L
with KL(Π) > 0 for any plane Π of TpL. Then M is isometric to

1. (N × R
2, gN + λ(x)2ds2 + εf(x)2dt2) and V = ∂s.

2.
(

N × H
2
[ε](r), gN + λ(x)2(ds2 + ε cosh2(rs)dt2)

)
and

V =
(

−ε
r

ht(t) tanh(rs) + γ
)

∂t + h(t)∂s,

where h(t) = α sin(rt + β) if ε = −1 or h(t) = αert + βe−rt if ε = 1
and α, β, γ ∈ R.

3.
(

N × Ĥ
2
[ε](r), gN + λ(x)2(ds2 + εe2rsdt2)

)
and

V =
(εα

2r
e−2rs − rα

2
t2 − rβt + γ

)
∂t + (αt + β)∂s,

where α, β, γ ∈ R.
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4.
(

N × R
2
[ε], gN + λ(x)2(ds2 + εdt2)

)
and V = γ∂t + ∂s, where γ ∈ R.

Proof. We proceed by induction over dimL. Suppose first that dimL = 2.
Using proposition 4.4.2, V t is standard static for t in a dense open set Θ.
Fix t0 ∈ Θ and decompose L as (N × R, gN + λ(x)2ds2) where ∂s = V t0 . If
there is a t1 ∈ Θ with V t1 and ∂s linearly independent at some point, then
corollary 4.4.5 ensures L = H

2 or L = R
2, which contradicts the curvature

hypothesis. Therefore V t is linearly dependent to ∂s for all t ∈ R and
proposition 4.4.4 proves the statement.

Now, assuming the statement for dimL = n − 1, we will prove it for
dimL = n. As before, L = (N × R, gN + λ(x)2ds2), where ∂s = V t0 . If
there is t ∈ Θ with V t linearly independent to ∂s at some point, applying
the induction hypothesis, L is isometric to a warped product S ×µ H

2
[ε](r),

S ×µ Ĥ
2
[ε](r), S ×µ R

2
[ε] or to (S ×R

2, gS +µ(z)2du2 +λ(z)2ds2) where V t = ∂u

and V t0 = ∂s. In the first three cases, any tangent plane to the fibre
has nonpositive curvature and can be discarded. In the last case, V t is
orthogonal to V t0 and we can obtain a contradiction using the continuity
of V t respect to t. Therefore, V t must be linearly dependent to ∂s for all
t ∈ R and applying proposition 4.4.4 we get the result.

We also obtain the same classification if the manifold is Einstein.

Theorem 4.4.9. Let M = L ×εf R be an Einstein static manifold with L
complete and dimension greater than one. If there exists a standard static
vector field V linearly independent to ∂t at some point, then M is isome-
tric to (N × R

2, gN + λ(x)2ds2 + εf(x)2dt2) where V = ∂s or to a warped
product N ×λ H

2
[ε](r), N ×λ Ĥ

2
[ε](r) or N ×λ R

2
[ε].

Proof. Using proposition 4.4.6, M is (N × R
2, gN + λ(x)2ds2 + εf(x)2dt2)

and V = ∂s or L decomposed as (N × R, gN + λ(x)2ds2) and f(x, s) =
λ(x)c(s). Suppose the second one. Since M is Einstein, there is δ ∈ R such
that

RicL(X, Y ) =
1
f

Hf (X, Y ) + δg(X, Y ) for X, Y ∈ X(L), (4.12)

but being L also a static manifold,

RicL(X, Y ) = RicN(X, Y ) − 1
λ

Hλ(X, Y ) for X, Y ∈ X(N),

RicL(∂s, ∂s) = −λ△Nλ,
Hf (X, Y ) = cHλ(X, Y ) for X, Y ∈ X(N),
Hf (∂s, ∂s) = λ (cg(∇λ, ∇λ) + css) .
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Replacing in equation 4.12, we get

RicN(X, Y ) =
2
λ

Hλ(X, Y ) + δg(X, Y ) for X, Y ∈ X(N), (4.13)

−λ△Nλ = g(∇λ, ∇λ) +
css

c
+ δλ2. (4.14)

From equation 4.14 we conclude that css

c
= a for certain constant a ∈ R.

Moreover, since L is complete, necessarily a = r2 and therefore c(s) = ers+β

or c(s) = α cosh(rs + β). Rescaling we obtain that M is isometric to
N ×λ H

2
[ε](r), N ×λ Ĥ

2
[ε](r) or N ×λ R

2
[ε].

Remark 4.4.10. Arguments used in Theorems 4.4.8 and 4.4.9 also work
locally, so we can avoid the completeness of the base obtaining similar con-
clusions. More concretely, we would obtain that a neighborhood of the point
where ∂t and V (being V static but nonnecessarily standard) are linearly in-
dependent, is isometric to (N ×R

2, gN +λ(x)2ds2 +εf(x)2dt2) where V = ∂s

or to a warped product N ×λ S, where S is a surface of constant curvature.

Now, we particularize the above to the case of a (four dimensional)
spacetime. In the following theorem it is shown that a fundamental com-
ponent of static Einstein spacetimes with different decompositions are the
Riemannian surfaces

1
k1 + k2

u
+ k3u2

du2 + (k1 +
k2

u
+ k3u2)dv2, (4.15)

where k1, k2, k3 ∈ R. Observe that surfaces of constant curvature 1, −1 and
0 are included in this family for an appropriate choice of the constants. In
fact, euclidean plane is obtained taking k1 = 1, k2 = k3 = 0, hyperbolic one
for k1 = k3 = 1, k2 = 0 and a piece of a sphere for k1 = 1, k2 = 0, k3 = −1.

Theorem 4.4.11. Let M = L ×−f R be an Einstein static spacetime. If
there exists a standard static vector field linearly independent to ∂t at some
point, then almost every point in M has a neighborhood isometric to a direct
product of two surfaces with the same constant curvature or to a warped
product Γ ×u S, where Γ is a surface as the one given in 4.15 and S has
constant curvature.

Moreover, if L is complete and M is Ricci-flat, then the universal cove-
ring of M is isometric to the Minkowski space.

Proof. As it is said in remark 4.4.10, since L is not supposed complete, from
theorem 4.4.9 we only obtain that M is locally a warped product N ×λ S,
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where S has constant curvature (the other case in the remark should be
discarded because a standard static vector field in a Lorentzian manifold is
supposed timelike). Since dim N = 2, we have RicN = Kg, being K the
curvature of N , and thus equation 4.13 transforms to

Hλ =
λ(K − δ)

2
g. (4.16)

Taking trace we get
△Nλ = λ(K − δ) (4.17)

and replacing in equation 4.14 we have

−λ2K = g(∇λ, ∇λ) + a. (4.18)

If λ is constant, then N has constant curvature K = −a
λ2 and rescaling the

metric of S, M is locally the direct product of two surfaces with the same
constant curvature.

Suppose now that λ is not constant. Differentiating the above equation,
−λdK = (3K − δ)dλ and thus λ3K = b + δ

3λ3, for certain b ∈ R. Now,
equation 4.18 can be written as

− b
λ

− δ
3

λ2 = g(∇λ, ∇λ) + a. (4.19)

Equation 4.16 means that ∇λ is conformal and, since it is not constant, its
critical points are isolated. Moreover, in a neighborhood of any point where
∇λ 6= 0, N is a warped product (R2, du2 + λ2

udv2) being ∂u = ∇λ
|∇λ| , [45, 58].

In this coordinates, equation 4.19 is

λ2
u = −a − b

λ
− δ

3
λ2, (4.20)

and reparametrizing with (u, v) 7→ (λ(u), v), N is locally isometric to

1
h(u)

du2 + h(u)dv2,

where h(u) = −a − b
u

− δ
3u2. This proves the first part.

For the second one, suppose that L is complete and δ = 0. We already
know that a = r2 ≥ 0 and then it follows K, b ≤ 0. If λ is not constant,
then it has at most two critical point. We discuss each possibility (see [45]).

• λ has not critical points. Then N is globally isometric to a warped
product du2 + λ2

udv2. Differentiating 4.20, λuu ≤ 0 and since λ is
defined in the whole R, it becomes negative. Contradiction
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• λ has only one critical point x0. Then N − {x0} is isometric to a
warped product ((0, ∞) × S

1, du2 + λ2
udv2), where ∂u = ∇λ

|∇λ| and x0 is
identified with (0, s0). The function λ : [0, ∞) → R

+ holds λu(0) = 0
and does not have critical points in (0, ∞). Since λuu ≤ 0, λ becomes
negative, which is a contradiction.

• λ has two critical points. Then N is diffeomorphic to S
2, but this is

impossible because K ≤ 0.

Therefore, λ is necessarily constant, equation 4.17 and 4.18 implies
K = a = 0 and the universal covering of M is isometric to the Minkowski
spacetime.

The same conclusion of the first part of theorem 4.4.11 is obtained in
[59], but with slightly different hypothesis. The author starts with a fixed
Riemannian 3-dimensional metric and he supposes that different Einstein
static spacetimes can be constructed using it. Then, he proves that the
metric is locally the one given in 4.15. Observe that if we have a static
manifold with two different static decompositions, a priori, we do not know
if the respective bases are isometric.

On the other hand, the second part of the theorem follows directly from
M.T. Anderson’s result [3], although in his paper M did not have two di-
fferent static decompositions, but we have included the proof here because,
under this assumption, it is much simpler than original one.

Finally, we show that, as in the GRW case, a condition on the lightlike
sectional curvature ensures the uniqueness of the static decomposition of a
Lorentzian manifold.

Theorem 4.4.12. Let M = L ×−f R be a static space with dimL ≥ 2. If
there exists a point (p, t) ∈ M such that K(Π) 6= 0 for any degenerate plane
Π of T(p,t)M , then M admits a unique decomposition as static space.

Proof. Let V be a (timelike) standard static vector field on M linearly
independent to ∂t at some point and suppose first that L is complete. Using
proposition 4.4.6, L = (N × R, gN + λ(x)2ds2) and f(x, s) = λ(x)c(s) and
we can show as in corollary 4.3.7 that there is a degenerate plane at (p, t)
with zero lighlike sectional curvature, which is a contradiction.

Now, although L is not necessarily complete, proposition 4.4.6 is valid
locally and we can still use the above arguments to show that in a neigh-
borhood U of (p, t) there is a unique static decomposition. Therefore V and
∂t are linearly dependent in U , but being killing vector fields, this implies
that in fact they are linearly dependent in the whole M .
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Apéndice I: Resumen en español

Construir objetos complejos a partir de otros más sencillos es un proceso
común en matemáticas. Los diferentes tipos de productos de métricas cons-
tituyen un ejemplo de ésto en Geometŕıa Diferencial. En efecto, dadas
(Mi, gi), i = 1, 2, dos variedades semi-Riemannianas podemos considerar
las siguientes métricas en la variedad producto M1 × M2.

• El producto doble twisted: λ2
1g1 + λ2

2g2, donde λi ∈ C∞(M1 × M2).

• El producto twisted: g1 + λ2
2g2, donde λ2 ∈ C∞(M1 × M2).

• El producto doble alabeado: λ2
1g1 + λ2

2g2, donde λ1 ∈ C∞(M2) y
λ2 ∈ C∞(M1).

• El producto alabeado: g1 + λ2
2g2, donde λ2 ∈ C∞(M1).

• El producto directo: g1 + g2.

Los productos alabeados fueron introducidos por B. O’Neill y R.L. Bishop
en 1969 para construir variedades Riemannianas con curvatura seccional
negativa [9], y los productos twisted (también llamados productos umbili-
cales) por R.L. Bishop para estudiar la estructura local de las submersiones
Riemannianas con fibras umb́ılicas, [8]. La primera definición expĺıcita de
producto doble alabeado aparece en [7] y la de producto doble twisted en
[27]. Esta clase de métricas productos han sido ampliamente estudiadas, ya
que en ellas los cálculos se simplifican pero siguen siendo métricas bastante
generales. Aśı, por ejemplo, la mayoŕıa de los modelos de espaciotiempos
son productos alabeados: Schwarzschild, modelos de Friedmann, Kruskal,
Reissner-Nordström, espacios de De Sitter y anti De Sitter...

Otro proceso importante en matemáticas es el inverso del anterior: des-
componer un objeto en componentes más simples. Con este propósito, G.
De Rham probó en 1952 su famoso teorema de descomposición.
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Teorema 1.2.1 ([17]). Sea M una variedad Riemanniana com-
pleta y śımplemente conexa. Si es reducible en un punto, en-
tonces es isométrica a un producto directo de factores irreducibles.
Además, los factores son únicos salvo orden.

Este teorema fue generalizado al caso semi-Riemanniano por H. Wu
asumiendo la hipótesis de reducibilidad débil, [63]. Más tarde, S. Hiepko
probó un resultado similar que aseguraba la descomposición de una variedad
Riemanniana como un producto alabeado, [34].

Si una variedad M es débilmente reducible en un punto p, entonces pode-
mos obtener una distribución en M definiendo Sx = Pγ,p,x(Sp), donde Sp es
el subespacio invariante por transporte paralelo en p y γ cualquier curva que
una p con x. Se puede demostrar que tanto S como S⊥ son distribuciones
integrables y, además, las foliaciones correspondientes son ortogonales, com-
plementarias y geodésicas. A dos foliaciones en estas condiciones se le da
el nombre de estructura de producto directo en M . En la demostración del
teorema de De Rham-Wu dada en [40], la hipótesis de reducibilidad débil
sólo se usa para obtener una estructura de producto directo tal y como se
ha descrito antes. Por lo tanto, usando el lenguaje de foliaciones, el teorema
de De Rham-Wu se puede enunciar de la siguiente manera: una variedad
semi-Riemanniana completa y śımplemente conexa con una estructura de
producto directo es isométrica al producto directo de dos hojas, donde las
foliaciones son identificadas con las conónicas del producto.

Siguiendo este punto de vista, R. Ponge y H. Reckziegel probaron que
las propiedades geometricas de dos foliaciones complementarias y ortogo-
nales determinan el tipo de descomposición. Concretamente, obtuvieron el
siguiente teorema.

Teorema 1.2.2 ([51]). Sea (M, g) una variedad semi-Riemanniana
śımplemente conexa con (F1, F2) dos foliaciones complemen-
tarias y ortogonales. Supongamos que F1 es geodésica y con
hojas completas.

1. Si F2 es umb́ılica, entonces M es isométrica a un producto
twisted.

2. Si F2 es esférica, entonces M es isométrica a un producto
alabeado.

3. Si F2 es geodésica, entonces M es isométrica a un producto
directo.
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En cualquier caso, las foliaciones (F1, F2) son identificadas con
las canónicas del producto.

La demostración del teorema anterior se divide en dos pasos. Primera-
mente, se obtiene la descomposición difeomorfa de la variedad aplicando lo
siguiente.

Teorema 1.2.3 ([51], versión semi-Riemmanniana de [10]). Sea
M una variedad semi-Riemanniana śımplemente conexa con dos
foliaciones ortogonales y complementarias. Si una de ellas es
geodésica y con hojas completas, entonces M es difeomorfa a
una variedad producto de forma que las foliationes se idenfican
con las conónicas del producto.

Una vez obtenida la decomposición difeomorfa, se consigue la descom-
posición isométrica probando la siguiente proposición.

Proposición 1.2.4 ([51]). Sea M = M1 × M2 y llamemos
(F1, F2) a las foliaciones canónicas. Supongamos que g es una
métrica semi-Riemanniana tal que F1 y F2 son foliaciones or-
togonales. Entonces (M, g) es

1. un producto doble twisted M1 ×(λ1,λ2) M2 si y sólo si F1 y
F2 son umb́ılicas.

2. un producto twisted M1 ×λ2
M2 si y sólo si F1 es geodésica

y F2 umb́ılica.

3. un producto alabeado M1×λ2
M2 si y sólo si F1 es geodésica

y F2 esférica.

4. un producto directo si y sólo si F1 y F2 son geodésicas.

Usando técnicas diferentes, N. Koike probó un resultado bastante general
en esta dirección.

Teorema 1.2.5 ([41]). Sea M una variedad semi-Riemanniana
śımplemente conexa y (F1, F2) dos foliaciones complementarias,
ortogonales y umb́ılicas. Si las hojas de F1 son completas y
dim F1 ≥ 3, entonces M es isométrica a un producto twisted
doble de dos hojas.

Además, si dimF1 ≥ 1 y (∇XNi)
F3−i = g(X, N3−i)Ni para todo

X ∈ F3−i, donde Ni son los vectores de curvatura media para
i = 1, 2, entonces M es el producto doble alabeado de dos hojas.
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Hay que destacar en la demostración del teorema anterior, el autor
también obtiene las expresiones expĺıcitas de las funciones de alabeo.

Igual que antes, la descomposición se obtiene en dos fases: la difeomorfa
y la isométrica. Para la primera, se considera la noción de conexión de
Ehresmann, la cual se define como sigue: dada una foliación F , una dis-
tribución complementaria D se llama conexión de Ehresmann para F si
para cualquier par de curvas α, β : [0, 1] → M con α(0) = β(0), α′ ∈ F y
β′ ∈ D existe una aplicación H : [0, 1] × [0, 1] → M tal que H(t, 0) = α(t),
H(0, s) = β(s), ∂tH ∈ F y ∂sH ∈ D. Si además la conexión de Ehresmann
es integrable, entonces se puede probar lo siguiente.

Teorema 1.2.6 ([11]). Sea M una variedad śımplemente conexa
con una foliación. Si admite una conexión de Ehresmann inte-
grable, entonces M es difeomorfa al producto de dos hojas y las
foliaciones se identifican con las canónicas del producto.

Si una variedad semi-Riemanniana M tiene dos foliaciones ortogonales,
complementarias y umb́ılicas F1, F2, entonces se puede demostrar que F2 es
una conexión de Ehresmann integrable para F1 y el teorema anterior asegura
la descomposición difeomorfa. Después de ésto, se obtiene la descomposición
métrica y las expresiones expĺıcitas de las funciones usando que, bajo la
hipótesis de umbilicidad, las aplicaciones de holomomı́a son difeomorfismos
conformes.

Otra manera de generalizar el teorema de De Rham-Wu es eliminando
la simple conectividad, la cual obviamente no es necesaria para que una
variedad sea un producto global. Sin embargo, existen ejemplos relativa-
mente sencillos de variedades semi-Riemanniana completas, no śımplemente
conexas y con una estructura de producto directo que no son un pro-
ducto global. Por lo tanto, surge la siguiente pregunta natural: ¿cuáles
son las condiciones necesarias y suficientes para que una variedad semi-
Riemanniana completa con una estructura de producto directo sea un pro-
ducto global?

En 1973, P. Wang consideró este problema obteniendo el siguiente re-
sultado.

Teorema 1.2.7 ([62]). Sea M una variedad semi-Riemanniana
completa con una estructura de producto directo (F1, F2). Si
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p es un punto regular para ambas folaciones, entonces M está
recubierta por el producto directo de las hojas que pasan por p.

Además, usando la teoŕıa de foliaciones bundle-like, dio una condición
necesaria y suficiente para que una variedad Riemanniana con una estruc-
tura de producto directo sea un producto global.

Teorema 1.2.8 ([62]). Sea M una variedad semi-Riemanniana
completa con una estructura de producto directo (F1, F2). Si
F1 es una foliación regular, p ∈ M es un punto regular para F2
y las hojas que pasan por p se intersecan una a otra sólo en p,
entonces M es isométrica al producto directo de ellas.

El art́ıculo de P. Wang fue el primero y más importante sobre este tema.

Los teoremas de descomposición sobre foliaciones de codimension uno
merecen una atención especial. En ellos se usa el gradiente de una función,
lo cual permiten eliminar la simple conexión, y algunas hipótesis adicionales.

En 1939 A. Fialkow, entre otros autores, estudio la solución de la ecuación
diferencial Hessh = △h

n
g, la cual es equivalente a que ∇h sea conforme,

[24]. Impĺıcitamente, obtuvo un teorema de descomposición, el cual fue
expĺıcitamente formulado y probado en 1965 por Y. Tashiro.

Teorema 1.2.9 ([58]). Sea M una variedad completa y h ∈
C∞(M) una función sin puntos cŕıticos satisfaciendo Hessh =
ag para alguna función a. Entonces M es isométrica a un pro-
ducto alabeado (un producto directo si a ≡ 0) con base de di-
mensión uno.

Esto se puede generalizar fácilmente al caso semi-Riemanniano con sólo
imponer que ∇h no sea luz en ningún punto. La herramienta principal
para probarlo es el hecho de que las curvas integrales de ∇h

|∇h| intersecan las
hipersuperficies de nivel de h para un único valor de su parámetro, lo cual
implica que la aplicación Φ : R × L → M es un difeomorfismo, donde Φ es
el flujo de ∇h

|∇h| y L una hipersurperficie de nivel. Después, se puede obtener
la descomposición métrica como un producto alabeado usando que ∇h es
un campo cerrado y conforme. Otros trabajos importantes que usan esta
idea son [25, 26, 38, 54].

Observese que aunque tuvieramos un campo de vectores con las mismas
propiedades que ∇h, esto es, cerrado y conforme, no podŕıamos asegurar la
descomposición global porque no tiene por qué ser el gradiente de ninguna
función.
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El teorema de De Rham no sólo asegura la descomposición de una va-
riedad, sino que también la unicidad de los factores. La unicidad de las
diferentes métricas producto es un cuestión no trivial. Por ejemplo, el es-
pacio euclideo se puede descomponer como un producto directo de varias
maneras, pero el teorema de De Rham asegura que ésta es esencialmente la
única variedad Riemanniana śımplemente conexa con esta propiedad. Esto
fue generalizado al caso no śımplemente conexo por J.H. Eschenburg y E.
Heintze.

Teorema 1.2.10 ([20]). Cualquier variedad Riemanniana conexa
se descompone como un producto directo M0 × M1 × . . . Mk,
donde M0 es un factor euclideo maximal y cada Mi es indes-
componible para i > 0. Esta descomposición es única salvo
orden.

La unicidad de productos más generales que los productos directos es
aún un tema poco tratado y sólo se conocen resultados particulares como en
[56], donde los autores muestran que un espacio estático con base compacta
no puede admitir otra descomposición diferente como espacio estático.

El objetivo de este trabajo es estudiar las variedades que son localmente
un producto doble alabeado. Siempre supondremos que esta estructura
local está dada por un par de foliaciones adecuadas y nos centraremos en
aspectos como la unicidad o la descomposición global de la variedad. Los
resultados aqúı presentados están recogidos en los art́ıculos [28, 29, 30].

En el caṕıtulo 2 empezamos considerando foliaciones de codimensión
uno dadas por un campo alabeado (ver definición 2.1.2) y mostramos que
ciertas hipótesis sobre la curvatura de Ricci aseguran la descomposición
global como un Robertson-Walker generalizado.

Teorema 2.2.2 (pg. 31). Sea M una variedad Lorentziana
completa y no compacta con n ≥ 3 y U un campo alabeado no
paralelo. Si se tiene una de las siguientes condiciones

1. Ric(U) ≤ 0,

2. Ric(v) ≥ 0 para todo v ∈ U⊥,

3. Ric(u) ≥ 0 para todo vector luz u,

entonces M es globalmente un Robertson-Walker generalizado.
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Este resultado se aplica posteriormente a varias situaciones. En la
sección 2.3 se tratan los flúıdos perfectos, dando condiciones suficientes para
que sean un Robertson-Walker global.

Teorema 2.3.2 (pg. 38). Sea M una espaciotiempo no com-
pacto con un flúıdo barotrópico (U, ρ, η) tal que

1. U es geodésico.

2. ρ > 0 es no constante, η + ρ 6= 0, dη

dρ
6= 0 y d2η

d2ρ
6= 0

3. Se cumple la ecuación de estado

(
ρ′

ρ + η

)′

=
1

3

(
ρ′

ρ + η

)2

+
1

2
(ρ + 3η).

Entonces o M es incompleta o es un Robertson-Walker global.

Si la curvatura seccional luminosa en una variedad de Lorentz es una
función de puntos, entonces es conocido que localmente es isométrica a un
Robertson-Walker, [39]. En la sección 2.4, damos una desigualdad sobre la
curvatura que provoca la descomposición global en esta situación.

Teorema 2.4.6 (pg. 42). Sea M una variedad de Lorentz
no compacta y completa con n > 3 y U un campo unitario y
geodésico. Supongamos que la curvatura seccional luminosa KU

es una función de punto sin ceros y cumple 1
n−2Ric(U) < KU .

Entonces M es globalmente un Robertson-Walker.

El caṕıtulo 2 acaba estudiando cuando las hipersuperficies umb́ılicas de
un Robertson-Walker generalizado son globalmente un producto.

Teorema 2.5.2 (pg. 44). Sea M una variedad de Lorentz
completa con n > 3 y U un campo warped. Si S es una hipersu-
perficie temporal, no compacta, completa y umb́ılica de M con
vector de curvatura media nunca nulo tal que K(Π) ≥ 0 para
todo plano degenerado Π tangente a S, entonces S es global-
mente un Robertson-Walker generalizado.

En el caṕıtulo 3 tratamos con foliaciones de dimensión arbitraria. Con-
cretamente, consideramos lo que llamamos una estructura alabeada doble:
dos foliaciones complementarias, ortogonales y umb́ılicas con vectores de
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curvatura media cerrados. El teorema 1.2.5 asegura que una variedad com-
pleta con una estructura alabeada doble es un cociente de un producto
alabeado doble global. Es por esto por lo que non centramos en tales co-
cientes después de introducir la importante noción de transportes adaptado
y mostrar su relación con la holonomı́a en la sección 3.1. Las foliaciones
inducidas en el cociente constituyen una estructura alabeada doble y las
denotaremos por (F1, F2). A la hoja que pasa por x0 la llamaremos Fi(x0).

La principal herramienta del caṕıtulo 3 es la amplia generalización del
teorema 1.2.7 que probamos en la sección 3.2.

Teorema 3.2.5 (pg. 57). Sea M =
(
M1 ×(λ1,λ2) M2

)
/Γ un

cociente de un producto alabeado doble y fijemos (a0, b0) ∈ M1×
M2. El punto x0 = p(a0, b0) no tiene holonomı́a si y sólo si existe
un recubrimiento semi-Riemanniano normal

Φ : F1(x0) ×(ρ1,ρ2) F2(x0) → M,

donde ρ1 ∈ C∞(F2(x0)) y ρ2 ∈ C∞(F1(x0)) son functiones posi-
tivas.

El estudio de este recubrimiento nos permite obtener condiciones nece-
sarias y suficientes para que una estructura alabeada doble sea un producto
alabeado doble global.

Corolario 3.2.8 (pg. 59). Sea M =
(
M1 ×(λ1,λ2) M2

)
/Γ un

cociente de un producto alabeado doble. Un punto x0 ∈ M
no tiene holonomı́a y F1(x0) ∩ F2(x0) = {x0} si y sólo si M es
isométrica al producto alabeado doble F1(x0) ×(ρ1,ρ2) F2(x0).

Este resultado generaliza el teorema 1.2.8 en varios sentidos: trata con
productos alabeados dobles en lugar de productos directos, la hipótesis de
regularidad es debilitada y es válido en el caso semi-Riemanniano. Hay
que destacar que la demostración del teorema 1.2.8 no puede ser trasladada
directamente al caso semi-Riemanniano porque usa el corolario 3 de [52], el
cual a su vez está basado fuertemente en la distancia Riemannian.

El teorema 3.2.5 también nos proporciona una forma de comparar dos
hojas de una misma foliación en una estructura alabeada doble.

Corolario 3.2.11 (pg. 62). Sea M =
(
M1 ×(λ1,λ2) M2

)
/Γ un

cociente de una estructura alabeada doble.
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1. Si F1(x0) no tiene holonomı́a, entonces para cualquier hoja
F1 existe un recubirmiento semi-Riemanniano normal Φ :
F1(x0) → F1 con grupo de transformaciones Hol(F1).

2. Todas las hojas sin holonomı́a son hometéticas.

En la sección 3.3, continuamos estudiando las estructuras de producto
alabeado doble usando el espacio de hojas, lo cual nos permite probar un
resultado de “casi” descomposición.

Teorema 3.3.6 (pg. 69). Sea M =
(
M1 ×(λ1,λ2) M2

)
/Γ un

cociente de una estructura alabeada doble. Si F1 es una foliación
regular, entonces

1. La proyección η : M → L1 es un fibrado y π1(L1, F1) =
π1(M, x)/π1(F1, x) donde x ∈ F1 ∈ L1.

2. Existe un abierto denso W ⊂ M que es globalmente isométrico
a un producto alabeado doble.

En la sección 3.4 se prueba el siguiente teorema, que asegura la descom-
posición global bajo una hipótesis sobre la curvatura.

Teorema 3.4.3 (pg. 72). Sea M =
(
M1 ×(λ1,λ2) M2

)
/Γ un

cociente de un producto alabeado doble, siendo M1 una variedad
Riemanniana completa y M2 una variedad semi-Riemanniana
con ı́ndice 0 < ν2. Supongamos que F2 no tiene holonomı́a,
K(Π) < 0 para todo plano mixto no degenerado Π y que λ2 tiene
algún punto cŕıtico. Entonces M es globalmente un producto
alabeado doble.

Como aplicación del teorema anterior, en las sección 3.5 probamos lo
siguiente acerca de las submersiones semi-Riemannianas,

Teorema 3.5.10 (pg. 82). Sea M una variedad Lorentziana
completa, B una variedad Riemanniana y π : M → B una
submersión semi-Riemanniana con fibras umb́ılicas de dimensión
k > 1. Si K(Π) < 0 para todo plano espacial mixto y el vector
de curvatura media es cerrado con algún cero, entonces M es
globalmente un producto alabeado.
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Finalmente, en el caṕıtulo 4 probamos algunos resultados sobre la uni-
cidad de las descomposiciones. En las sección 4.1 generalizamos el teorema
1.2.10 al caso semi-Riemanniano usando técnicas totalmente diferentes que
las usadas en [20], ya que están basadas en la distancia Riemanniana. Para
ello, usamos los resultados desarrollados en el caṕıtulo 3, y más concreta-
mente el corolario 3.2.8, para probar lo siguiente.

Teorema 4.1.3 (pg. 88). Sea M = F0 × . . . × Fk un pro-
ducto directo semi-Riemanniano completo con F0 un factor semi-
euclideo maximal y cada Fi indescomponible para i > 0. Si
M = S0 × . . . × Sk′ es otra descomposición en con S0 un factor
semi-euclideo maximal y cada Sj indescomponible para j > 0
tal que Fi(p) ∩ Sj(p) es cero o un subespacio no degenerado
para algún p ∈ M y todo i, j, entonces k = k′ y, tras reordenar,
Fi = Si para todo i ∈ {0, . . . , k}.

Después, nos centramos en las descomposiciones tipo Robertson-Walker
generalizadas, probando que la curvatura seccional luminosa está relacionada
con la unicidad y que el espacio de De Sitter es la única variedad de Lorentz
completa con diferentes descomposiciones. Para probar ésto, basta consi-
derar campos temporales, cerrados y conformes porque tales campos carac-
terizan las descomposiciones Robertson-Walker generalizadas.

Teorema 4.2.3 (pg. 93). Sea M una variedad Lorentziana
con n ≥ 3 y V un campo temporal, cerrado y conforme. Si
existe otro campo cerrado, conforme, sin ceros y linealmente
independiente con V en algún punto p ∈ M , entonces

1. Existe un plano degenerado Π de TpM tal que K(Π) = 0.

2. Si V es no paralelo y M es completa, entonces M es isométrica
al espacio de De Sitter.

Como corolario, podemos asegurar la unicidad de la descomposición de
los espaciotiempos de Friedmann.

Corolario 4.2.5 (pg. 97). Los modelos de Friedmann admiten
una única descomposición como Robertson-Walker generalizado,
incluso localmente.



Resumen en español xi

El caso estático parece más complicado y, en contraste con el caso de
las descomposiciones como Robertson-Walker generalizado, hay numerosas
variedades completas con diferentes descomposiciones estáticas. Bajo una
hipótesis sobre curvatura, demostramos que los planos de Minkowski/euclideo
y el anti De Sitter/hiperbólico

R2
[ε] =

(
R2, ds2 + εdt2) ,

H2
[ε](r) =

(
R2, ds2 + ε cosh(rs)2dt2) ,

Ĥ2
[ε](r) =

(
R2, ds2 + εe2rsdt2) ,

donde ε = ±1, aparecen de manera natural en la clasificación de tales
variedades. Observese que Ĥ2

[1](r) es otra representación de H2
[1](r) y Ĥ2

[−1](r)

es un trozo de H2
[−1](r).

Teorema 4.4.8 (pg. 107). Sea M = L ×εf R una varie-
dad estática con base completa. Si existe otra descomposición
estática diferente y L tiene un punto con curvatura seccional
positiva, entonces M es isométrica a una de las siguientes varie-
dades.

1. (N × R2, gN + λ(x)2ds2 + εf(x)2dt2).

2. Un producto alabeado N×λH2
[ε](r), N×λĤ2

[ε](r) o N×λR2
[ε].

También obtenemos la misma clasificación, pero suponiendo que la va-
riedad es Einstein, en el teorema 4.4.9 (pg. 108). Finalmente, al igual
que para los Robertson-Walker generalizados, mostramos que la curvatura
seccional luminosa también está relacionada con la unicidad.

Teorema 4.4.12 (pg. 111). Sea M un espacio estático con
n ≥ 3. Si existe un punto con curvatura seccional luminosa
distinta de cero, entonces M admite una única decomposición
como espacio estático.





Apéndice II: Conclusión

Las generalizaciones más importantes del clásico teorema de descomposición

de De Rham-Wu fueron obtenidas por N. Koike en 1990 y R. Ponge y H.

Reckziegel en 1993. Para ello, estos autores consideraron una variedad semi-

Riemannian con dos foliaciones ortogonales y complementarias que cumplen

ciertas condiciones geométricas. Este punto de vista es bastante natural, ya

que la hipótesis de reducibilidad débil del teorema de De Rham-Wu da lugar

a dos foliaciones ortogonales, complementarias y geodésicas. En cualquier

caso, la simple conexión de la variedad siempre es asumida, lo cual es una

fuerte restricción topológica.

El primer intento de eliminar esta restricción fue hecho por P. Wang

en 1973, quien obtuvo condiciones necesarias y suficientes para que una

variedad Riemanniana con dos foliaciones ortogonales, complementarias y

geodésicas sea el producto directo de dos hojas. Este autor usó técnicas

t́ıpicamente Riemannianas lo cual nos ha motivado a desarrollar nuevas he-

rramientas que permitan abordar el problema anterior en un ambiente semi-

Riemanniano y para foliaciones más generales que las geodésicas. En con-

creto, hemos considerado variedades semi-Riemannianas con un par de fo-

liaciones complementarias, ortogonales, umb́ılicas y con vector de curvatura

media cerrado, probando resultados acerca de su estructura y obteniendo

las condiciones necesarias y suficientes para descomponer globalmente como

un producto alabeado doble.

Por otro lado, el problema de la unicidad de la descomposición no ha

sido tratado en la literatura matemática, excepto en el propio teorema de

De Rham-Wu y en el trabajo de J.H. Eschenburg y E. Heintze, donde

se establece la unicidad de la descomposición como producto directo de

una variedad Riemanniana. El uso de las técnicas desarrolladas en esta

memoria nos ha permitido obtener la unicidad para productos directos semi-

Riemannianos y espacios estáticos y Robertson-Walker generalizados.

xiii




