2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000

Publicaciones del grupo [rss]
2017
A. N. Bernal, B. Janssen, A. Jiménez, A. Jiménez-Cano, J. A. Orejuela, P. Sánchez-Moreno, M. Sánchez. On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism Physics Letters B 768 (2017) , 280–287. [bib]
A. L. Albujer, H. F. de Lima, A. M. Oliveira, M. A. L. Velásquez. Rigidity of complete spacelike hypersurfaces in spatially weighted generalized Robertson-Walker spacetimes Differential Geom. Appl. 50 (2017) , 140–154. MathScinet [bib] [doi]
J. D. Pérez. Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces Differential Geom. Appl. 50 (2017) , 1–10. MathScinet [bib] [doi]
D. de la Fuente, A. Romero, P. J. Torres. Existence and extendibility of rotationally symmetric graphs with a prescribed higher mean curvature function in Euclidean and Minkowski spaces J. Math. Anal. Appl. 446 (2017) no. 1 , 1046–1059. MathScinet [bib] [doi]
A L. Albujer, M. Caballero. Geometric properties of surfaces with the same mean curvature in $\Bbb R^3$ and $\Bbb L^3$ J. Math. Anal. Appl. 445 (2017) no. 1 , 1013–1024. MathScinet [bib] [doi]
2016
A. Romero, R. M. Rubio. A nonlinear inequality involving the mean curvature of a spacelike surface in 3-dimensional GRW spacetimes and Calabi-Bernstein type problems Chapter in Recent advances in the geometry of submanifolds---dedicated to the memory of Franki Dillen (1963--2013) Amer. Math. Soc., Providence, RI 674 (2016) , 141–152. MathScinet [bib]
G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A classification of three-dimensional real hypersurfaces in non-flat complex space forms in terms of their generalized Tanaka-Webster Lie derivative Canad. Math. Bull. 59 (2016) no. 4 , 813–823. (Paging previously given as: 1--11) MathScinet [bib] [doi]
J. D. Pérez, H Lee, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor in the GTW connection Canad. Math. Bull. 59 (2016) no. 4 , 721–733. (Paging previously given as: 1--13) MathScinet [bib] [doi]
M. Caballero, R. M. Rubio. Characterizations of umbilic points of isometric immersions in Riemannian and Lorentzian manifolds Taiwanese J. Math. 20 (2016) no. 5 , 1041–1052. MathScinet [bib] [doi]
M. Mars, J. M. M. Senovilla. Spacetime characterizations of $\Lambda$-vacuum metrics with a null Killing 2-form Classical Quantum Gravity 33 (2016) no. 19 , 195004, 26. MathScinet [bib] [doi]
M. Gutiérrez, O. Müller. Compact Lorentzian holonomy Differential Geom. Appl. 48 (2016) , 11–22. MathScinet [bib] [doi]
J. D. Pérez. Comparing Lie derivatives on real hypersurfaces in complex projective spaces Mediterr. J. Math. 13 (2016) no. 4 , 2161–2169. MathScinet [bib] [doi]
J. D. Pérez. Lie derivatives on a real hypersurface in complex two-plane Grassmannians Publ. Math. Debrecen 89 (2016) no. 1-2 , 63–71. MathScinet [bib] [doi]
J. A. Aledo, R. M. Rubio. A Bernstein problem in warped products Ann. Acad. Sci. Fenn. Math. 41 (2016) no. 2 , 699–704. MathScinet [bib] [doi]
M. Gutiérrez, B. Olea. Induced Riemannian structures on null hypersurfaces Math. Nachr. (2016) no. , . [bib] [doi]
M. Mars, T.-T. Paetz, J. M. M. Senovilla, W. Simon. Characterization of (asymptotically) Kerr--de Sitter-like spacetimes at null infinity Classical Quantum Gravity 33 (2016) no. 15 , 155001, 48. MathScinet [bib] [doi]
A. Romero, R. M. Rubio. Bernstein-type theorems in a Riemannian manifold with an irrotational Killing vector field Mediterr. J. Math. 13 (2016) no. 3 , 1285–1290. MathScinet [bib] [doi]
J. A. Aledo, R. M. Rubio. Parabolicity of minimal graphs in Riemannian warped products and rigidity theorems Nonlinear Anal. 141 (2016) , 130–138. MathScinet [bib] [doi]
M. Mars, A. Soria. On the Penrose inequality along null hypersurfaces Classical Quantum Gravity 33 (2016) no. 11 , 115019, 34. MathScinet [bib] [doi]
B. Reina, J. M. M. Senovilla, R. Vera. Junction conditions in quadratic gravity: thin shells and double layers Classical Quantum Gravity 33 (2016) no. 10 , 105008, 41. MathScinet [bib] [doi]
Powered by bibtexbrowser