2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000

Publicaciones del grupo http://gigda.ugr.es/digap/publicaciones/?all=1&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib&rss bibtexbrowser v20101203 Existence and extendibility of rotationally symmetric graphs with a prescribed higher mean curvature function in Euclidean and Minkowski spaces http://dx.doi.org/10.1016/j.jmaa.2016.09.022 D. de la Fuente, A. Romero, P. J. Torres. Existence and extendibility of rotationally symmetric graphs with a prescribed higher mean curvature function in Euclidean and Minkowski spaces J. Math. Anal. Appl. 446 (2017) no. 1 , 1046–1059. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3554770 A nonlinear inequality involving the mean curvature of a spacelike surface in 3-dimensional GRW spacetimes and Calabi-Bernstein type problems http://gigda.ugr.es/digap/?key=MR3565251&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, R. M. Rubio. A nonlinear inequality involving the mean curvature of a spacelike surface in 3-dimensional GRW spacetimes and Calabi-Bernstein type problems Chapter in Recent advances in the geometry of submanifolds---dedicated to the memory of Franki Dillen (1963--2013) Amer. Math. Soc., Providence, RI 674 (2016) , 141–152. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3565251 Bernstein-type theorems in a Riemannian manifold with an irrotational Killing vector field http://dx.doi.org/10.1007/s00009-015-0546-y A. Romero, R. M. Rubio. Bernstein-type theorems in a Riemannian manifold with an irrotational Killing vector field Mediterr. J. Math. 13 (2016) no. 3 , 1285–1290. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3513170 Uniqueness of complete maximal hypersurfaces in spatially open $(n+1)$-dimensional Robertson-Walker spacetimes with flat fiber http://dx.doi.org/10.1007/s10714-016-2069-7 J. A. S. Pelegrín, A. Romero, R. M. Rubio. Uniqueness of complete maximal hypersurfaces in spatially open $(n+1)$-dimensional Robertson-Walker spacetimes with flat fiber Gen. Relativity Gravitation 48 (2016) no. 6 , 48:70. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3499609 On maximal hypersurfaces in Lorentz manifolds admitting a parallel lightlike vector field http://dx.doi.org/10.1088/0264-9381/33/5/055003 J. A. S. Pelegrín, A. Romero, R. M. Rubio. On maximal hypersurfaces in Lorentz manifolds admitting a parallel lightlike vector field Classical Quantum Gravity 33 (2016) no. 5 , 055003, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3462818 Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes http://dx.doi.org/10.1016/j.jmaa.2015.10.071 Jr. E. A. Lima, A. Romero. Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes J. Math. Anal. Appl. 435 (2016) no. 2 , 1352–1363. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3429646 Unchanged direction motion in general relativity: the problems of prescribing acceleration and the extensibility of trajectories http://dx.doi.org/10.1063/1.4935854 D. de la Fuente, A. Romero, P. J. Torres. Unchanged direction motion in general relativity: the problems of prescribing acceleration and the extensibility of trajectories J. Math. Phys. 56 (2015) no. 11 , 112501, 13. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3425188 Complete maximal hypersurfaces in certain spatially open generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/s13398-014-0195-1 A. Romero, R. M. Rubio, J. J. Salamanca. Complete maximal hypersurfaces in certain spatially open generalized Robertson-Walker spacetimes Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Math. RACSAM 109 (2015) no. 2 , 451–460. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3383426 The classical Calabi-Bernstein Theorem revisited http://dx.doi.org/10.1016/j.jmaa.2015.06.030 J. A. Aledo, A. Romero, R. M. Rubio. The classical Calabi-Bernstein Theorem revisited J. Math. Anal. Appl. 431 (2015) no. 2 , 1172–1177. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3365862 The existence and uniqueness of standard static splitting http://dx.doi.org/10.1088/0264-9381/32/10/105004 J. A. Aledo, A. Romero, R. M. Rubio. The existence and uniqueness of standard static splitting Classical Quantum Gravity 32 (2015) no. 10 , 105004, 9. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3339851 Uniformly accelerated motion in General Relativity: completeness of inextensible trajectories http://dx.doi.org/10.1007/s10714-015-1879-3 D. de la Fuente, A. Romero. Uniformly accelerated motion in General Relativity: completeness of inextensible trajectories Gen. Relativity Gravitation 47 (2015) no. 4 , Art. 33, 13. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3318834 Radial solutions of the Dirichlet problem for the prescribed mean curvature equation in a Robertson-Walker spacetime http://gigda.ugr.es/digap/?key=MR3299388&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D.l de la Fuente, A. Romero, P. J. Torres. Radial solutions of the Dirichlet problem for the prescribed mean curvature equation in a Robertson-Walker spacetime Adv. Nonlinear Stud. 15 (2015) no. 1 , 171–181. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3299388 A new technique for the study of complete maximal hypersurfaces in certain open generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/978-4-431-55215-4_3 A. Romero. A new technique for the study of complete maximal hypersurfaces in certain open generalized Robertson-Walker spacetimes Chapter in Real and complex submanifolds Springer, Tokyo 106 (2014) , 21–31. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3333365 Spacelike graphs of finite total curvature in certain 3-dimensional generalized Robertson-Walker spacetime http://dx.doi.org/10.1016/S0034-4877(14)60043-4 A. Romero, R. M. Rubio, J. J. Salamanca. Spacelike graphs of finite total curvature in certain 3-dimensional generalized Robertson-Walker spacetime Rep. Math. Phys. 73 (2014) no. 2 , 241–254. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3285512 New characterizations of compact totally umbilical spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime through a lightcone http://dx.doi.org/10.1007/s00009-013-0377-7 F. J. Palomo, F. J. Rodríguez, A. Romero. New characterizations of compact totally umbilical spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime through a lightcone Mediterr. J. Math. 11 (2014) no. 4 , 1229–1240. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3268819 Componentwise conformal vector fields on Riemannian almost product manifolds http://gigda.ugr.es/digap/?key=MR3223312&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, F. J. Palomo, A. Romero. Componentwise conformal vector fields on Riemannian almost product manifolds Balkan J. Geom. Appl. 19 (2014) no. 1 , 88–99. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3223312 A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes http://dx.doi.org/10.1016/j.jmaa.2014.04.063 A. Romero, R. M. Rubio, J. J. Salamanca. A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes J. Math. Anal. Appl. 419 (2014) no. 1 , 355–372. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3217154 Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems http://dx.doi.org/10.1016/j.na.2014.04.010 J. A. Aledo, A. Romero, R. M. Rubio. Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems Nonlinear Anal. 106 (2014) , 57–69. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3209685 Estimates for the curvatures of spacelike hypersurfaces in gradient conformally stationary spacetimes http://dx.doi.org/10.1088/0264-9381/31/8/085015 J. A. Aledo, A. Romero, R. M. Rubio. Estimates for the curvatures of spacelike hypersurfaces in gradient conformally stationary spacetimes Classical Quantum Gravity 31 (2014) no. 8 , 085015, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3195597 Upper and lower bounds for the volume of a compact spacelike hypersurface in a generalized Robertson-Walker spacetime http://dx.doi.org/10.1142/S0219887814500066 J. A. Aledo, A. Romero, R. M. Rubio. Upper and lower bounds for the volume of a compact spacelike hypersurface in a generalized Robertson-Walker spacetime Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 1 , 1450006, 10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3149299 Parabolicity of spacelike hypersurfaces in generalized Robertson-Walker spacetimes. Applications to uniqueness results http://dx.doi.org/10.1142/S0219887813600141 A. Romero, R. M. Rubio, J. J. Salamanca. Parabolicity of spacelike hypersurfaces in generalized Robertson-Walker spacetimes. Applications to uniqueness results Int. J. Geom. Methods Mod. Phys. 10 (2013) no. 8 , 1360014, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3092564 Completeness of trajectories of relativistic particles under stationary magnetic fields http://dx.doi.org/10.1142/S0219887813600074 A. M. Candela, A. Romero, M. Sánchez. Completeness of trajectories of relativistic particles under stationary magnetic fields Int. J. Geom. Methods Mod. Phys. 10 (2013) no. 8 , 1360007, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3092557 On spacelike surfaces in four-dimensional Lorentz-Minkowski spacetime through a light cone http://dx.doi.org/10.1017/S0308210511001119 F. J. Palomo, A. Romero. On spacelike surfaces in four-dimensional Lorentz-Minkowski spacetime through a light cone Proc. Roy. Soc. Edinburgh Sect. A 143 (2013) no. 4 , 881–892. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3082306 Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes http://dx.doi.org/10.1088/0264-9381/30/11/115007 A. Romero, R. M. Rubio, J. J. Salamanca. Uniqueness of complete maximal hypersurfaces in spatially parabolic generalized Robertson-Walker spacetimes Classical Quantum Gravity 30 (2013) no. 11 , 115007, 13. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3055096 Completeness of the trajectories of particles coupled to a general force field http://dx.doi.org/10.1007/s00205-012-0596-2 A. M. Candela, A. Romero, M. Sánchez. Completeness of the trajectories of particles coupled to a general force field Arch. Ration. Mech. Anal. 208 (2013) no. 1 , 255–274. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3021548 New Calabi-Bernstein results for some elliptic nonlinear equations http://dx.doi.org/10.1142/S0219530513500024 M. Caballero, A. Romero, R. M. Rubio. New Calabi-Bernstein results for some elliptic nonlinear equations Anal. Appl. (Singap.) 11 (2013) no. 1 , 1350002, 13. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3019507 On maximal surfaces in certain non-flat 3-dimensional Robertson-Walker spacetimes http://dx.doi.org/10.1007/s11040-012-9108-8 A. Romero, R. M. Rubio. On maximal surfaces in certain non-flat 3-dimensional Robertson-Walker spacetimes Math. Phys. Anal. Geom. 15 (2012) no. 3 , 193\textendash202. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2948714 Some Riemannian geometric proofs of the fundamental theorem of algebra http://gigda.ugr.es/digap/?key=MR2914638&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. Almira, A. Romero. Some Riemannian geometric proofs of the fundamental theorem of algebra Differ. Geom. Dyn. Syst. 14 (2012) , 1–4. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2914638 Differential geometry and its applications: some recent advances by the research group http://gigda.ugr.es/digap/?key=MR2953859&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, M. Sánchez. Differential geometry and its applications: some recent advances by the research group Chapter in Florentino García Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 157–170. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2953859 Certain conformal-like infinitesimal symmetries and the curvature of a compact Riemannian manifold http://projecteuclid.org/getRecord?id=euclid.bbms/1307452072 M. Ortega, F. J. Palomo, A. Romero. Certain conformal-like infinitesimal symmetries and the curvature of a compact Riemannian manifold Bull. Belg. Math. Soc. Simon Stevin 18 (2011) no. 2 , 223–229. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2847758 Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field http://iopscience.iop.org/0264-9381/28/14/145009 M. Caballero, A. Romero, R. M. Rubio. Constant mean curvature spacelike hypersurfaces in Lorentzian manifolds with a timelike gradient conformal vector field Classical and Quantum Gravity 28 (2011) , 145009. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2822605 Complete CMC spacelike surfaces with bounded hyperbolic angle in generalized Robertson-Walker spacetimes http://dx.doi.org/10.1142/S0219887810004658 M. Caballero, A. Romero, R. M. Rubio. Complete CMC spacelike surfaces with bounded hyperbolic angle in generalized Robertson-Walker spacetimes Int. J. Geom. Methods Mod. Phys. 7 (2010) no. 6 , 961\textendash978. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2735601 A nonlinear inequality arising in geometry and Calabi-Bernstein type problems http://gigda.ugr.es/digap/?key=MR2721582&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, R. M. Rubio. A nonlinear inequality arising in geometry and Calabi-Bernstein type problems J. Inequal. Appl. (2010) , Art. ID 950380, 10. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2721582 New proof of the Calabi-Bernstein theorem http://dx.doi.org/10.1007/s10711-009-9448-0 A. Romero, R. M. Rubio. New proof of the Calabi-Bernstein theorem Geom. Dedicata 147 (2010) , 173\textendash176. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2660574 Compact conformally stationary Lorentzian manifolds with no causal conjugate points http://dx.doi.org/10.1007/s10455-010-9204-6 F. J. Palomo, A. Romero. Compact conformally stationary Lorentzian manifolds with no causal conjugate points Ann. Global Anal. Geom. 38 (2010) no. 2 , 135–144. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2670051 Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/s11005-010-0395-3 M. Caballero, A. Romero, R. M. Rubio. Constant mean curvature spacelike surfaces in three-dimensional generalized Robertson-Walker spacetimes Lett. Math. Phys. 93 (2010) no. 1 , 85\textendash105. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2661525 Uniqueness of maximal surfaces in generalized Robertson-Walker spacetimes and Calabi-Bernstein type problems http://dx.doi.org/10.1016/j.geomphys.2009.11.008 M. Caballero, A. Romero, R. M. Rubio. Uniqueness of maximal surfaces in generalized Robertson-Walker spacetimes and Calabi-Bernstein type problems J. Geom. Phys. 60 (2010) no. 3 , 394\textendash402. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2600002 On the mean curvature of spacelike surfaces in certain three-dimensional Robertson-Walker spacetimes and Calabi-Bernstein\textquoterights type problems http://dx.doi.org/10.1007/s10455-009-9171-y A. Romero, R. M. Rubio. On the mean curvature of spacelike surfaces in certain three-dimensional Robertson-Walker spacetimes and Calabi-Bernstein\textquoterights type problems Ann. Global Anal. Geom. 37 (2010) no. 1 , 21\textendash31. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2575469 A method to construct 4-dimensional spacetimes with a spacelike circle action http://dx.doi.org/10.1142/S021988780900376X S. Haesen, F. J. Palomo, A. Romero. A method to construct 4-dimensional spacetimes with a spacelike circle action Int. J. Geom. Methods Mod. Phys. 6 (2009) no. 4 , 667–681. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2541944 Null congruence spacetimes constructed from 3-dimensional Robertson-Walker spaces http://dx.doi.org/10.1016/j.difgeo.2008.10.006 S. Haesen, F. J. Palomo, A. Romero. Null congruence spacetimes constructed from 3-dimensional Robertson-Walker spaces Differential Geom. Appl. 27 (2009) no. 2 , 240–249. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2503976 Conformally stationary Lorentzian tori with no conjugate points are flat http://dx.doi.org/10.1090/S0002-9939-09-09847-5 F. J. Palomo, A. Romero. Conformally stationary Lorentzian tori with no conjugate points are flat Proc. Amer. Math. Soc. 137 (2009) no. 7 , 2403–2406. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2495275 Maximal graphs and Calabi-Bernstein's type problems in some Robertson-Walker spacetimes http://gigda.ugr.es/digap/?key=MR2478033&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero. Maximal graphs and Calabi-Bernstein's type problems in some Robertson-Walker spacetimes Bull. Transilv. Univ. Bra\c sov Ser. III 1(50) (2008) , 309–316. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2478033 Null congruence spacetimes http://gigda.ugr.es/digap/?key=MR2504241&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen, F. J. Palomo, A. Romero. Null congruence spacetimes Chapter in XV International Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 11 (2007) , 293–297. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2504241 Bochner-Lichnerowicz's technique and uniqueness of constant mean curvature spacelike hypersurfaces http://gigda.ugr.es/digap/?key=MR2497692&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero. Bochner-Lichnerowicz's technique and uniqueness of constant mean curvature spacelike hypersurfaces Chapter in Pure and applied differential geometry---PADGE 2007 Shaker Verlag, Aachen (2007) , 221–230. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2497692 Magnetic vortex filament flows http://dx.doi.org/10.1063/1.2767535 M. Barros, J. L. Cabrerizo, M. Fernández, A. Romero. Magnetic vortex filament flows J. Math. Phys. 48 (2007) no. 8 , 082904, 27. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2349410 Yet another application of the Gauss-Bonnet theorem for the sphere http://projecteuclid.org/euclid.bbms/1179839226 J. M. Almira, A. Romero. Yet another application of the Gauss-Bonnet theorem for the sphere Bull. Belg. Math. Soc. Simon Stevin 14 (2007) no. 2 , 341–342. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2341569 Spacelike surfaces with positive definite second fundamental form in 3D spacetimes http://dx.doi.org/10.1016/j.geomphys.2006.07.002 J. A. Aledo, S. Haesen, A. Romero. Spacelike surfaces with positive definite second fundamental form in 3D spacetimes J. Geom. Phys. 57 (2007) no. 3 , 913–923. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2275200 Certain actual topics on modern Lorentzian geometry http://dx.doi.org/10.1016/S1874-5741(06)80011-7 F. J. Palomo, A. Romero. Certain actual topics on modern Lorentzian geometry Chapter in Handbook of differential geometry. Vol. II Elsevier/North-Holland, Amsterdam (2006) , 513–546. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2194674 A new proof of Liebmann classical rigidity theorem for surfaces in space forms http://dx.doi.org/10.1216/rmjm/1181069618 J. A. Aledo, L. J. Alías, A. Romero. A new proof of Liebmann classical rigidity theorem for surfaces in space forms Rocky Mountain J. Math. 35 (2005) no. 6 , 1811–1824. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2210636 The Gauss-Landau-Hall problem on Riemannian surfaces http://dx.doi.org/10.1063/1.2136215 M. Barros, A. Romero, J. L. Cabrerizo, M. Fernández. The Gauss-Landau-Hall problem on Riemannian surfaces J. Math. Phys. 46 (2005) no. 11 , 112905, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2186773 Differential geometry of indefinite complex submanifolds in indefinite complex space forms http://gigda.ugr.es/digap/?key=MR2135831&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, Y. J. Suh. Differential geometry of indefinite complex submanifolds in indefinite complex space forms Extracta Math. 19 (2004) no. 3 , 339–398. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2135831 Some estimates for the curvatures of complete spacelike hypersurfaces in generalized Robertson-Walker spacetimes http://dx.doi.org/10.1016/j.geomphys.2004.04.007 J. A. Aledo, J. A. Gálvez, A. Romero. Some estimates for the curvatures of complete spacelike hypersurfaces in generalized Robertson-Walker spacetimes J. Geom. Phys. 52 (2004) no. 4 , 469–479. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2098836 Lorentzian manifolds with no null conjugate points http://dx.doi.org/10.1017/S0305004104007674 M. Gutiérrez, F. J. Palomo, A. Romero. Lorentzian manifolds with no null conjugate points Math. Proc. Cambridge Philos. Soc. 137 (2004) no. 2 , 363–375. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2092065 Erratum to: ``A Berger-Green type inequality for compact Lorentzian manifolds'' [Trans.\ Amer.\ Math.\ Soc.\ \bf 354 (2002), no.\ 11, 4505--4523; MR1926886 (2003h:53098)] http://dx.doi.org/10.1090/S0002-9947-03-03456-1 M. Gutiérrez, F. J. Palomo, A. Romero. Erratum to: ``A Berger-Green type inequality for compact Lorentzian manifolds'' [Trans.\ Amer.\ Math.\ Soc.\ \bf 354 (2002), no.\ 11, 4505--4523; MR1926886 (2003h:53098)] Trans. Amer. Math. Soc. 355 (2003) no. 12 , 5119–5120. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1997597 Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form http://dx.doi.org/10.1016/S0926-2245(03)00019-6 J. A. Aledo, A. Romero. Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form Differential Geom. Appl. 19 (2003) no. 1 , 97–111. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1983897 Projective vector fields on Lorentzian manifolds http://dx.doi.org/10.1023/A:1020308012870 A. Romero, M. Sánchez. Projective vector fields on Lorentzian manifolds Geom. Dedicata 93 (2002) , 95–105. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1934690 Uniqueness of noncompact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes http://dx.doi.org/10.1023/A:1020341512060 J. M. Latorre, A. Romero. Uniqueness of noncompact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes Geom. Dedicata 93 (2002) , 1–10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1934681 A Berger-Green type inequality for compact Lorentzian manifolds http://dx.doi.org/10.1090/S0002-9947-02-03060-X M. Gutiérrez, F. J. Palomo, A. Romero. A Berger-Green type inequality for compact Lorentzian manifolds Trans. Amer. Math. Soc. 354 (2002) no. 11 , 4505–4523. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1926886 The introduction of Bochner's technique on Lorentzian manifolds http://dx.doi.org/10.1016/S0362-546X(01)00424-2 A. Romero. The introduction of Bochner's technique on Lorentzian manifolds In Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000) 47 (2001) no. 5 , 3047–3059. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1979203 New examples of Calabi-Bernstein problems for some nonlinear equations http://dx.doi.org/10.1016/S0926-2245(01)00057-2 J. M. Latorre, A. Romero. New examples of Calabi-Bernstein problems for some nonlinear equations Differential Geom. Appl. 15 (2001) no. 2 , 153–163. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1857560 Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries http://gigda.ugr.es/digap/?key=MR1791221&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries In Proceedings of the 7th Autumn Conference on Differential Geometry and its Applications (Spanish) (Valencia, 1998) R. Soc. Mat. Esp., Madrid 1 (2000) , 1–14. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1791221 Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature http://dx.doi.org/10.1016/S0393-0440(99)00008-X J. A. Aledo, L. J. Alías, A. Romero. Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature J. Geom. Phys. 31 (1999) no. 2-3 , 195–208. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1706636 Differential geometry of complex submanifolds in indefinite complex space forms http://gigda.ugr.es/digap/?key=MR1697316&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero. Differential geometry of complex submanifolds in indefinite complex space forms In Proceedings of the Third International Workshop on Differential Geometry (Taegu, 1998) Kyungpook Natl. Univ., Taegu (1999) , 17–29. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1697316 Differential geometry of complex hypersurfaces in indefinite complex space forms http://gigda.ugr.es/digap/?key=MR1697315&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero. Differential geometry of complex hypersurfaces in indefinite complex space forms In Proceedings of the Third International Workshop on Differential Geometry (Taegu, 1998) Kyungpook Natl. Univ., Taegu (1999) , 1–15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1697315 Rigidity of complete spacelike hypersurfaces in spatially weighted generalized Robertson-Walker spacetimes http://dx.doi.org/10.1016/j.difgeo.2016.11.006 A. L. Albujer, H. F. de Lima, A. M. Oliveira, M. A. L. Velásquez. Rigidity of complete spacelike hypersurfaces in spatially weighted generalized Robertson-Walker spacetimes Differential Geom. Appl. 50 (2017) , 140–154. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3588646 Geometric properties of surfaces with the same mean curvature in $\Bbb R^3$ and $\Bbb L^3$ http://dx.doi.org/10.1016/j.jmaa.2016.07.062 A L. Albujer, M. Caballero. Geometric properties of surfaces with the same mean curvature in $\Bbb R^3$ and $\Bbb L^3$ J. Math. Anal. Appl. 445 (2017) no. 1 , 1013–1024. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3543808 Calabi-Bernstein results and parabolicity of maximal surfaces in Lorentzian product spaces http://dx.doi.org/10.1007/978-1-4614-4897-6_2 A. L. Albujer, L. J. Alías. Calabi-Bernstein results and parabolicity of maximal surfaces in Lorentzian product spaces Chapter in Recent trends in Lorentzian geometry Springer, New York 26 (2013) , 49–85. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3064796 Complete spacelike hypersurfaces in a Robertson-Walker spacetime http://dx.doi.org/10.1017/S0305004111000351 A. L. Albujer, F. E. C. Camargo, H. F. de Lima. Complete spacelike hypersurfaces in a Robertson-Walker spacetime Math. Proc. Cambridge Philos. Soc. 151 (2011) no. 2 , 271–282. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2823135 Parabolicity of maximal surfaces in Lorentzian product spaces http://dx.doi.org/10.1007/s00209-009-0630-8 A. L. Albujer, L. J. Alías. Parabolicity of maximal surfaces in Lorentzian product spaces Math. Z. 267 (2011) no. 1-2 , 453–464. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2772261 On the scalar curvature of hypersurfaces in spaces with a Killing field http://dx.doi.org/10.1515/ADVGEOM.2010.017 A. L. Albujer, J. A. Aledo, Luis J. Alías. On the scalar curvature of hypersurfaces in spaces with a Killing field Adv. Geom. 10 (2010) no. 3 , 487–503. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2660423 Complete spacelike hypersurfaces with constant mean curvature in $-\Bbb R\times\Bbb H^n$ http://dx.doi.org/10.1016/j.jmaa.2010.02.039 A. L. Albujer, F. E. C. Camargo, H. F. de Lima. Complete spacelike hypersurfaces with constant mean curvature in $-\Bbb R\times\Bbb H^n$ J. Math. Anal. Appl. 368 (2010) no. 2 , 650–657. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2643830 A geometrical interpretation of the null sectional curvature http://dx.doi.org/10.1016/j.geomphys.2009.11.002 A. L. Albujer, S. Haesen. A geometrical interpretation of the null sectional curvature J. Geom. Phys. 60 (2010) no. 3 , 471–476. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2600008 A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in $\Bbb H^2\times \Bbb R_1$ http://dx.doi.org/10.1007/s00574-009-0022-z A. L. Albujer, L. J. Alías. A Hilbert-type theorem for spacelike surfaces with constant Gaussian curvature in $\Bbb H^2\times \Bbb R_1$ Bull. Braz. Math. Soc. (N.S.) 40 (2009) no. 4 , 465–478. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2563126 Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces http://dx.doi.org/10.1016/j.geomphys.2009.01.008 A. L. Albujer, L. J. Alías. Calabi-Bernstein results for maximal surfaces in Lorentzian product spaces J. Geom. Phys. 59 (2009) no. 5 , 620–631. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2518991 Spacelike hypersurfaces with constant mean curvature in the steady state space http://dx.doi.org/10.1090/S0002-9939-08-09546-4 A. L. Albujer, L. J. Alías. Spacelike hypersurfaces with constant mean curvature in the steady state space Proc. Amer. Math. Soc. 137 (2009) no. 2 , 711–721. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2448594 A local estimate for maximal surfaces in Lorentzian product spaces http://gigda.ugr.es/digap/?key=MR2584594&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. L. Albujer, L. J. Alías. A local estimate for maximal surfaces in Lorentzian product spaces Mat. Contemp. 34 (2008) , 1–10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2584594 Global behaviour of maximal surfaces in Lorentzian product spaces http://dx.doi.org/10.1142/9789812790613_0003 A. L. Albujer. Global behaviour of maximal surfaces in Lorentzian product spaces Chapter in Differential geometry and its applications World Sci. Publ., Hackensack, NJ (2008) , 23–33. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2462779 New examples of entire maximal graphs in $\Bbb H^2\times\Bbb R_1$ http://dx.doi.org/10.1016/j.difgeo.2007.11.035 A. L. Albujer. New examples of entire maximal graphs in $\Bbb H^2\times\Bbb R_1$ Differential Geom. Appl. 26 (2008) no. 4 , 456–462. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2424025 Updating method for the computation of orbits in parallel and sequential dynamical systems http://dx.doi.org/10.1080/00207160.2013.767894 J. A. Aledo, S. Martínez, J. C. Valverde. Updating method for the computation of orbits in parallel and sequential dynamical systems Int. J. Comput. Math. 90 (2013) no. 9 , 1796–1808. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3171863 Tackling the rank aggregation problem with evolutionary algorithms http://dx.doi.org/10.1016/j.amc.2013.07.081 J. A. Aledo, J. A. Gámez, D. Molina. Tackling the rank aggregation problem with evolutionary algorithms Appl. Math. Comput. 222 (2013) , 632–644. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3115900 Complete Laguerre minimal surfaces in $\Bbb R^3$ http://dx.doi.org/10.1016/j.na.2013.06.015 J. A. Aledo, J. A. Gálvez, V. Lozano. Complete Laguerre minimal surfaces in $\Bbb R^3$ Nonlinear Anal. 92 (2013) , 1–12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3091103 Parallel discrete dynamical systems on independent local functions http://dx.doi.org/10.1016/j.cam.2012.06.002 J. A. Aledo, S. Martinez, J. C. Valverde. Parallel discrete dynamical systems on independent local functions J. Comput. Appl. Math. 237 (2013) no. 1 , 335–339. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2966909 Parallel dynamical systems over directed dependency graphs http://dx.doi.org/10.1016/j.amc.2012.07.018 J. A. Aledo, S. Martinez, J. C. Valverde. Parallel dynamical systems over directed dependency graphs Appl. Math. Comput. 219 (2012) no. 3 , 1114–1119. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2981304 Parallel discrete dynamical systems on maxterm and minterm Boolean functions http://dx.doi.org/10.1016/j.mcm.2011.08.040 J. A. Aledo, S. Martinez, F. L. Pelayo, J. C. Valverde. Parallel discrete dynamical systems on maxterm and minterm Boolean functions Math. Comput. Modelling 55 (2012) no. 3-4 , 666–671. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2887406 An extension of the affine Bernstein problem http://dx.doi.org/10.1007/s00025-011-0181-2 J. A. Aledo, A. Martinez, Francisco Milán. An extension of the affine Bernstein problem Results Math. 60 (2011) no. 1-4 , 157–174. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2836891 Compact surfaces with constant Gaussian curvature in product spaces http://dx.doi.org/10.1007/s00009-010-0033-4 J. A. Aledo, Victorino Lozano, J. A. Pastor. Compact surfaces with constant Gaussian curvature in product spaces Mediterr. J. Math. 7 (2010) no. 3 , 263–270. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2679399 The Codazzi equation for surfaces http://dx.doi.org/10.1016/j.aim.2010.02.007 J. A. Aledo, J. M. Espinar, J. A. Gálvez. The Codazzi equation for surfaces Adv. Math. 224 (2010) no. 6 , 2511–2530. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2652214 Affine maximal surfaces with singularities http://dx.doi.org/10.1007/s00025-009-0426-5 J. A. Aledo, A. Martinez, Francisco Milán. Affine maximal surfaces with singularities Results Math. 56 (2009) no. 1-4 , 91–107. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2575853 Non-removable singularities of a fourth-order nonlinear partial differential equation http://dx.doi.org/10.1016/j.jde.2009.04.007 J. A. Aledo, A. Martinez, Francisco Milán. Non-removable singularities of a fourth-order nonlinear partial differential equation J. Differential Equations 247 (2009) no. 2 , 331–343. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2523681 A D'Alembert formula for flat surfaces in the 3-sphere http://dx.doi.org/10.1007/s12220-008-9057-4 J. A. Aledo, J. A. Gálvez, P. Mira. A D'Alembert formula for flat surfaces in the 3-sphere J. Geom. Anal. 19 (2009) no. 2 , 211–232. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2481959 The affine Cauchy problem http://dx.doi.org/10.1016/j.jmaa.2008.09.055 J. A. Aledo, A. Martinez, Francisco Milán. The affine Cauchy problem J. Math. Anal. Appl. 351 (2009) no. 1 , 70–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2472921 Height estimates for surfaces with positive constant mean curvature in $\Bbb M^2\times\Bbb R$ http://projecteuclid.org/euclid.ijm/1242414128 J. A. Aledo, J. M. Espinar, J. A. Gálvez. Height estimates for surfaces with positive constant mean curvature in $\Bbb M^2\times\Bbb R$ Illinois J. Math. 52 (2008) no. 1 , 203–211. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2507241 Surfaces with constant curvature in $\Bbb S^2\times\Bbb R$ and $\Bbb H^2\times\Bbb R$. Height estimates and representation http://dx.doi.org/10.1007/s00574-007-0059-9 J. A. Aledo, J. M. Espinar, J. A. Gálvez. Surfaces with constant curvature in $\Bbb S^2\times\Bbb R$ and $\Bbb H^2\times\Bbb R$. Height estimates and representation Bull. Braz. Math. Soc. (N.S.) 38 (2007) no. 4 , 533–554. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2371944 Hyperbolic linear Weingarten surfaces in $\Bbb R^3$ http://dx.doi.org/10.1007/s00574-007-0047-0 J. A. Aledo, J. M. Espinar. Hyperbolic linear Weingarten surfaces in $\Bbb R^3$ Bull. Braz. Math. Soc. (N.S.) 38 (2007) no. 2 , 291–300. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2317799 The Cauchy problem for improper affine spheres and the Hessian one equation http://dx.doi.org/10.1090/S0002-9947-07-04378-4 J. A. Aledo, Rosa M. B. Chaves, J. A. Gálvez. The Cauchy problem for improper affine spheres and the Hessian one equation Trans. Amer. Math. Soc. 359 (2007) no. 9 , 4183–4208 (electronic). MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2309181 Complete surfaces of constant curvature in $H^2\times\bold R$ and $S^2\times\bold R$ http://dx.doi.org/10.1007/s00526-006-0067-4 J. A. Aledo, J. M. Espinar, J. A. Gálvez. Complete surfaces of constant curvature in $H^2\times\bold R$ and $S^2\times\bold R$ Calc. Var. Partial Differential Equations 29 (2007) no. 3 , 347–363. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2321892 A conformal representation for linear Weingarten surfaces in the de Sitter space http://dx.doi.org/10.1016/j.geomphys.2007.02.002 J. A. Aledo, J. M. Espinar. A conformal representation for linear Weingarten surfaces in the de Sitter space J. Geom. Phys. 57 (2007) no. 8 , 1669–1677. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2319314 Isometric immersions of $\Bbb L^2$ into $\Bbb L^4$ http://dx.doi.org/10.1016/j.difgeo.2006.04.006 J. A. Aledo, J. A. Gálvez, P. Mira. Isometric immersions of $\Bbb L^2$ into $\Bbb L^4$ Differential Geom. Appl. 24 (2006) no. 6 , 613–627. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2280054 Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map http://dx.doi.org/10.1016/j.geomphys.2005.07.004 J. A. Aledo, J. M. Espinar, J. A. Gálvez. Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map J. Geom. Phys. 56 (2006) no. 8 , 1357–1369. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2236266 Extremal curves of the total curvature in homogeneous 3-spaces http://dx.doi.org/10.1016/j.jmaa.2015.05.072 M. Barros, A. Ferrández, O. J. Garay. Extremal curves of the total curvature in homogeneous 3-spaces J. Math. Anal. Appl. 431 (2015) no. 1 , 342–364. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3357589 On the energy density of helical proteins http://dx.doi.org/10.1007/s00285-013-0752-9 M. Barros, A. Ferrández. On the energy density of helical proteins J. Math. Biol. 69 (2014) no. 6-7 , 1801–1813. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3275214 Equivariant Willmore surfaces in conformal homogeneous three spaces http://dx.doi.org/10.1016/j.jmaa.2013.07.031 M. Barros, A. Ferrández, O. J. Garay. Equivariant Willmore surfaces in conformal homogeneous three spaces J. Math. Anal. Appl. 409 (2014) no. 1 , 459–477. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3095054 Addendum to `New classical string solutions in $\rm AdS_3$ through null scrolls' [MR3055092] http://dx.doi.org/10.1088/0264-9381/30/17/179401 M. Barros, A. Ferrández. Addendum to `New classical string solutions in $\rm AdS_3$ through null scrolls' [MR3055092] Classical Quantum Gravity 30 (2013) no. 17 , 179401, 3. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3104057 New classical string solutions in $\rm AdS_3$ through null scrolls http://dx.doi.org/10.1088/0264-9381/30/11/115003 M. Barros, A. Ferrández. New classical string solutions in $\rm AdS_3$ through null scrolls Classical Quantum Gravity 30 (2013) no. 11 , 115003, 19. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3055092 How big is the family of stationary null scrolls? http://dx.doi.org/10.1016/j.geomphys.2012.10.009 M. Barros, A. Ferrández. How big is the family of stationary null scrolls? J. Geom. Phys. 64 (2013) , 54–60. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3004013 Null scrolls as solutions of a sigma model http://dx.doi.org/10.1088/1751-8113/45/14/145203 M. Barros, A. Ferrández. Null scrolls as solutions of a sigma model J. Phys. A 45 (2012) no. 14 , 145203, 12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2904741 Critical curves for the total normal curvature of 3-dimensional space forms http://dx.doi.org/10.1016/j.jmaa.2011.11.057 M. Barros, O. J. Garay. Critical curves for the total normal curvature of 3-dimensional space forms J. Math. Anal. Appl. 389 (2012) no. 1 , 275–292. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2876497 Talking about helices and remembering Floro http://gigda.ugr.es/digap/?key=MR2953846&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Barros, A. Ferrández. Talking about helices and remembering Floro Chapter in Florentino Garc\'\i a Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 23–34. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2953846 Willmore energy estimates in conformal Berger spheres http://dx.doi.org/10.1016/j.chaos.2011.04.003 M. Barros, A. Ferrández. Willmore energy estimates in conformal Berger spheres Chaos Solitons Fractals 44 (2011) no. 7 , 515–521. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2813029 Epicycloids generating Hamiltonian minimal surfaces in the complex quadric http://dx.doi.org/10.1016/j.geomphys.2009.08.008 M. Barros, A. Ferrández. Epicycloids generating Hamiltonian minimal surfaces in the complex quadric J. Geom. Phys. 60 (2010) no. 1 , 68–73. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2578018 A conformal variational approach for helices in nature http://dx.doi.org/10.1063/1.3236683 M. Barros, A. Ferrández. A conformal variational approach for helices in nature J. Math. Phys. 50 (2009) no. 10 , 103529, 20. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2572702 Rotational surfaces in $\Bbb L^3$ and solutions of the nonlinear sigma model http://dx.doi.org/10.1007/s00220-009-0850-0 M. Barros, M. Caballero, M. Ortega. Rotational surfaces in $\Bbb L^3$ and solutions of the nonlinear sigma model Comm. Math. Phys. 290 (2009) no. 2 , 437–477. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2525627 Simple geometrical models with applications in physics http://dx.doi.org/10.1063/1.2918096 M. Barros. Simple geometrical models with applications in physics Chapter in Curvature and variational modeling in physics and biophysics Amer. Inst. Phys., Melville, NY 1002 (2008) , 71–113. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2483892 Villarceau foliated solitons in the two-dimensional $\rm O(3)$ nonlinear sigma model http://dx.doi.org/10.1016/j.geomphys.2006.02.010 M. Barros, M. Caballero, M. Ortega. Villarceau foliated solitons in the two-dimensional $\rm O(3)$ nonlinear sigma model J. Geom. Phys. 57 (2006) no. 1 , 177–192. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2265467 Massless particles in warped three spaces http://dx.doi.org/10.1142/S0217751X06025559 M. Barros, M. Caballero, M. Ortega. Massless particles in warped three spaces Internat. J. Modern Phys. A 21 (2006) no. 3 , 461–473. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2197347 Relativistic particles with rigidity and torsion in $D=3$ spacetimes http://dx.doi.org/10.1088/0264-9381/22/3/003 M. Barros, A. Ferrández, M. A. Javaloyes, P. Lucas. Relativistic particles with rigidity and torsion in $D=3$ spacetimes Classical Quantum Gravity 22 (2005) no. 3 , 489–513. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2115356 Models of relativistic particle with curvature and torsion revisited http://dx.doi.org/10.1023/B:GERG.0000022580.08717.40 J. Arroyo, M. Barros, O. J. Garay. Models of relativistic particle with curvature and torsion revisited Gen. Relativity Gravitation 36 (2004) no. 6 , 1441–1451. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2066064 Geometry of relativistic particles with torsion http://dx.doi.org/10.1142/S0217751X04018026 M. Barros, A. Ferrández, M. A. Javaloyes, P. Lucas. Geometry of relativistic particles with torsion Internat. J. Modern Phys. A 19 (2004) no. 11 , 1737–1745. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2057179 Closed free hyperelastic curves in the hyperbolic plane and Chen-Willmore rotational hypersurfaces http://dx.doi.org/10.1007/BF02783425 J. Arroyo, O. J. Garay, M. Barros. Closed free hyperelastic curves in the hyperbolic plane and Chen-Willmore rotational hypersurfaces Israel J. Math. 138 (2003) , 171–187. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2031956 A geometric algorithm to construct new solitons in the $\rm O(3)$ nonlinear sigma model http://dx.doi.org/10.1016/S0370-2693(02)03266-5 M. Barros. A geometric algorithm to construct new solitons in the $\rm O(3)$ nonlinear sigma model Phys. Lett. B 553 (2003) no. 3-4 , 325–331. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1976948 Relativistic particles with rigidity generating non-standard examples of Willmore-Chen hypersurfaces http://dx.doi.org/10.1088/0305-4470/35/32/304 J. Arroyo, M. Barros, O. J. Garay. Relativistic particles with rigidity generating non-standard examples of Willmore-Chen hypersurfaces J. Phys. A 35 (2002) no. 32 , 6815–6824. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1930893 Critical points of Willmore-Chen tension functionals http://gigda.ugr.es/digap/?key=MR1922038&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Barros. Critical points of Willmore-Chen tension functionals Chapter in Differential geometry, Valencia, 2001 World Sci. Publ., River Edge, NJ (2002) , 72–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1922038 Geometry and dynamics of relativistic particles with rigidity http://dx.doi.org/10.1023/A:1016313814003 M. Barros. Geometry and dynamics of relativistic particles with rigidity Gen. Relativity Gravitation 34 (2002) no. 6 , 837–852. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1914488 Holography and total charge http://dx.doi.org/10.1016/S0393-0440(01)00048-1 J. Arroyo, M. Barros, O. J. Garay. Holography and total charge J. Geom. Phys. 41 (2002) no. 1-2 , 65–72. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1872381 Equivariant tori which are critical points of the conformal total tension functional http://gigda.ugr.es/digap/?key=MR1902429&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Barros. Equivariant tori which are critical points of the conformal total tension functional RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 95 (2001) no. 2 , 249–258. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1902429 Geometric integration of the Betchov-Da Rios equation in a gravity-electromagnetism unified model http://dx.doi.org/10.1016/S0393-0440(00)00067-X M. Barros, A. Ferrández, P. Lucas. Geometric integration of the Betchov-Da Rios equation in a gravity-electromagnetism unified model J. Geom. Phys. 40 (2001) no. 1 , 1–12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1854311 General helices in the three-dimensional Lorentzian space forms http://dx.doi.org/10.1216/rmjm/1020171565 M. Barros, A. Ferrández, P. Lucas, M. A. Meroño. General helices in the three-dimensional Lorentzian space forms Rocky Mountain J. Math. 31 (2001) no. 2 , 373–388. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1840944 Symmetric soliton configurations of bosonic string theories http://dx.doi.org/10.1023/A:1010290522306 M. Barros, J. L. Cabrerizo, M. Fernández. Symmetric soliton configurations of bosonic string theories Gen. Relativity Gravitation 33 (2001) no. 3 , 415–428. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1834368 Some examples of critical points for the total mean curvature functional http://dx.doi.org/10.1017/S0013091500021210 J. Arroyo, M. Barros, O. J. Garay. Some examples of critical points for the total mean curvature functional Proc. Edinburgh Math. Soc. (2) 43 (2000) no. 3 , 587–603. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1878660 Conformal tension in string theories and M-theory http://dx.doi.org/10.1016/S0550-3213(00)00359-X M. Barros, A. Ferrández, P. Lucas. Conformal tension in string theories and M-theory Nuclear Phys. B 584 (2000) no. 3 , 719–748. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1777907 Willmore-Chen branes and Hopf $T$-duality http://dx.doi.org/10.1088/0264-9381/17/9/308 M. Barros. Willmore-Chen branes and Hopf $T$-duality Classical Quantum Gravity 17 (2000) no. 9 , 1979–1988. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1764006 Elasticity and conformal tension via the Kaluza-Klein mechanism http://dx.doi.org/10.1016/S0393-0440(99)00057-1 M. Barros, J. L. Cabrerizo, M. Fernández. Elasticity and conformal tension via the Kaluza-Klein mechanism J. Geom. Phys. 34 (2000) no. 2 , 111–120. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1754533 A criterion for reduction of variables in the Willmore-Chen variational problem and its applications http://dx.doi.org/10.1090/S0002-9947-00-02366-7 M. Barros, A. Ferrández, P. Lucas, M. A. Meroño. A criterion for reduction of variables in the Willmore-Chen variational problem and its applications Trans. Amer. Math. Soc. 352 (2000) no. 7 , 3015–3027. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1621713 Superelasticity and conformal total tension in unified theories. Implications for the Willmore-Chen variational problem in particle physics http://gigda.ugr.es/digap/?key=MR1780791&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Barros. Superelasticity and conformal total tension in unified theories. Implications for the Willmore-Chen variational problem in particle physics Rev. Acad. Canaria Cienc. 11 (1999) no. 1-2 , 193–221. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1780791 Reduction of variables for Willmore-Chen submanifolds in seven spheres http://dx.doi.org/10.1007/BF02780171 M. Barros, J. L. Cabrerizo, M. Fernández. Reduction of variables for Willmore-Chen submanifolds in seven spheres Israel J. Math. 113 (1999) , 29–43. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1729441 Lawson-type problems in nonstandard $3$-spheres http://dx.doi.org/10.1093/qjmath/50.200.385 M. Barros, A. Ferrández, P. Lucas. Lawson-type problems in nonstandard $3$-spheres Quart. J. Math. Oxford Ser. (2) 50 (1999) no. 200 , 385–388. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1726781 Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach http://dx.doi.org/10.1016/S0393-0440(99)00005-4 M. Barros, A. Ferrández, P. Lucas, M. A. Meroño. Solutions of the Betchov-Da Rios soliton equation: a Lorentzian approach J. Geom. Phys. 31 (1999) no. 2-3 , 217–228. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1706644 Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres http://dx.doi.org/10.2748/tmj/1178224810 M. Barros, O. J. Garay, D. A. Singer. Elasticae with constant slant in the complex projective plane and new examples of Willmore tori in five spheres Tohoku Math. J. (2) 51 (1999) no. 2 , 177–192. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1690015 Willmore-Chen tubes on homogeneous spaces in warped product spaces http://dx.doi.org/10.2140/pjm.1999.188.201 J. Arroyo, M. Barros, O. J. Garay. Willmore-Chen tubes on homogeneous spaces in warped product spaces Pacific J. Math. 188 (1999) no. 2 , 201–207. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1684145 The conformal total tension variational problem in Kaluza-Klein supergravity http://dx.doi.org/10.1016/S0550-3213(98)00601-4 M. Barros. The conformal total tension variational problem in Kaluza-Klein supergravity Nuclear Phys. B 535 (1998) no. 1-2 , 531–551. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1666496 Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces http://dx.doi.org/10.1016/S0393-0440(98)00010-2 M. Barros, A. Ferrández, P. Lucas, M. A. Meroño. Willmore tori and Willmore-Chen submanifolds in pseudo-Riemannian spaces J. Geom. Phys. 28 (1998) no. 1-2 , 45–66. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1653126 Spectral decomposition of spherical immersions with respect to the Jacobi operator http://dx.doi.org/10.1017/S0017089500032523 J. Arroyo, M. Barros, O. J. Garay. Spectral decomposition of spherical immersions with respect to the Jacobi operator Glasgow Math. J. 40 (1998) no. 2 , 205–212. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1630234 Free elasticae and Willmore tori in warped product spaces http://dx.doi.org/10.1017/S0017089500032596 M. Barros. Free elasticae and Willmore tori in warped product spaces Glasgow Math. J. 40 (1998) no. 2 , 265–272. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1630191 Hopf submanifolds in $S^7$ which are Willmore-Chen submanfolds http://dx.doi.org/10.1007/PL00004404 M. Barros, O. J. Garay. Hopf submanifolds in $S^7$ which are Willmore-Chen submanfolds Math. Z. 228 (1998) no. 1 , 121–129. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1617967 A characterisation of helices and Cornu spirals in real space forms http://dx.doi.org/10.1017/S0004972700030719 J. Arroyo, M. Barros, O. J. Garay. A characterisation of helices and Cornu spirals in real space forms Bull. Austral. Math. Soc. 56 (1997) no. 1 , 37–49. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1464047 Euclidean submanifolds with Jacobi mean curvature vector field http://dx.doi.org/10.1007/BF01222923 M. Barros, O. J. Garay. Euclidean submanifolds with Jacobi mean curvature vector field J. Geom. 58 (1997) no. 1-2 , 15–25. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1434175 Willmore tori in non-standard $3$-spheres http://dx.doi.org/10.1017/S0305004196001466 M. Barros. Willmore tori in non-standard $3$-spheres Math. Proc. Cambridge Philos. Soc. 121 (1997) no. 2 , 321–324. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1426526 General helices and a theorem of Lancret http://dx.doi.org/10.1090/S0002-9939-97-03692-7 M. Barros. General helices and a theorem of Lancret Proc. Amer. Math. Soc. 125 (1997) no. 5 , 1503–1509. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1363411 Characterizations of umbilic points of isometric immersions in Riemannian and Lorentzian manifolds http://dx.doi.org/10.11650/tjm.20.2016.7383 M. Caballero, R. M. Rubio. Characterizations of umbilic points of isometric immersions in Riemannian and Lorentzian manifolds Taiwanese J. Math. 20 (2016) no. 5 , 1041–1052. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3555887 Dual characterizations of the sphere and the hyperbolic space in arbitrary dimension http://dx.doi.org/10.1142/S0219887815600105 M. Caballero, R. M. Rubio. Dual characterizations of the sphere and the hyperbolic space in arbitrary dimension Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1560010, 5. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3400651 Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz--Minkowski space http://dx.doi.org/10.1016/j.jde.2014.12.011 A. L. Albujer, M. Caballero, R. López. Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz--Minkowski space J. Differential Equations 258 (2015) no. 7 , 2364–2374. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3306342 Calabi-Bernstein problems for spacelike slices in certain generalized Robertson-Walker spacetimes http://gigda.ugr.es/digap/?key=MR2867848&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Caballero, Rafael M. Rubio. Calabi-Bernstein problems for spacelike slices in certain generalized Robertson-Walker spacetimes Chapter in Advances in Lorentzian geometry Amer. Math. Soc. 49 (2011) , 11–16. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2867848 Rotational Willmore surfaces in $\Bbb L^3$ and solitons in the 2-dimensional $\rm O_1(3)$ nonlinear sigma model http://gigda.ugr.es/digap/?key=MR2497668&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Caballero. Rotational Willmore surfaces in $\Bbb L^3$ and solitons in the 2-dimensional $\rm O_1(3)$ nonlinear sigma model Chapter in Pure and applied differential geometry---PADGE 2007 Shaker Verlag, Aachen (2007) , 14–22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2497668 Gluing rotational surfaces in Lorentz-Minkowski space http://gigda.ugr.es/digap/?key=MR2333234&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Caballero, M. Ortega. Gluing rotational surfaces in Lorentz-Minkowski space In Proceedings of the Eleventh International Workshop on Differential Geometry Kyungpook Nat. Univ. (2007) , 93–104. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2333234 Solitons in the $\rm O(3)$ nonlinear sigma model foliated by Villarceau circles http://gigda.ugr.es/digap/?key=MR2368521&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Caballero. Solitons in the $\rm O(3)$ nonlinear sigma model foliated by Villarceau circles Chapter in XIV Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 10 (2006) , 255–260. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2368521 Equivalence of Pfaffian flag systems in dimension five http://gigda.ugr.es/digap/?key=MR2953848&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Cañadas-Pinedo, C. Ruiz. Equivalence of Pfaffian flag systems in dimension five Chapter in Florentino García Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 43–50. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2953848 Curvature and conjugate points in Lorentz symmetric spaces http://dx.doi.org/10.1007/s10455-009-9174-8 M. A. Cañadas-Pinedo, A. Díaz, M. Gutiérrez, B. Olea. Curvature and conjugate points in Lorentz symmetric spaces Ann. Global Anal. Geom. 37 (2010) no. 1 , 91–101. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2575472 First classification of Pfaffian systems in dimension five http://dx.doi.org/10.1142/S0129167X07004473 M. A. Cañadas-Pinedo, C. Ruiz. First classification of Pfaffian systems in dimension five Internat. J. Math. 18 (2007) no. 10 , 1151–1168. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2370221 Characterizations of Pfaffian systems. Consequences in dimension five http://dx.doi.org/10.1090/conm/288/04837 M. A. Cañadas-Pinedo, C. Ruiz. Characterizations of Pfaffian systems. Consequences in dimension five Chapter in Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) Amer. Math. Soc., Providence, RI 288 (2001) , 291–295. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1871020 Pfaffian systems with derived length one. The class of flag systems http://dx.doi.org/10.1090/S0002-9947-01-02638-1 M. A. Cañadas-Pinedo, C. Ruiz. Pfaffian systems with derived length one. The class of flag systems Trans. Amer. Math. Soc. 353 (2001) no. 5 , 1755–1766 (electronic). MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1813594 Incidence relations between a Pfaffian system and the characteristic of its first derived system http://gigda.ugr.es/digap/?key=MR1791223&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Cañadas-Pinedo, C. Ruiz. Incidence relations between a Pfaffian system and the characteristic of its first derived system In Proceedings of the 7th Autumn Conference on Differential Geometry and its Applications (Spanish) (Valencia, 1998) R. Soc. Mat. Esp., Madrid 1 (2000) , 31–40. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1791223 Sternberg's structure function of differential systems in dimension five http://gigda.ugr.es/digap/?key=MR1249612&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Cañadas-Pinedo, C. Ruiz. Sternberg's structure function of differential systems in dimension five Czechoslovak Math. J. 43(118) (1993) no. 3 , 429–438. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1249612 Hausdorff separability of the boundaries for spacetimes and sequential spaces http://dx.doi.org/10.1063/1.4939485 J. L. Flores, J. Herrera, M. Sánchez. Hausdorff separability of the boundaries for spacetimes and sequential spaces J. Math. Phys. 57 (2016) no. 2 , 022503, 25. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3449216 Connectivity by geodesics in open subsets of globally hyperbolic spacetimes http://dx.doi.org/10.1142/S0219887815600099 R. Bartolo, A. M- Candela, J. L. Flores. Connectivity by geodesics in open subsets of globally hyperbolic spacetimes Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1560009, 9. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3400650 Extremal surfaces and the rigidity of null geodesic incompleteness http://dx.doi.org/10.1088/0264-9381/32/5/055010 I. P. Costa e Silva, J. L. Flores. Extremal surfaces and the rigidity of null geodesic incompleteness Classical Quantum Gravity 32 (2015) no. 5 , 055010, 22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3313865 The causal boundary of spacetimes isocausal to standard stationary ones http://dx.doi.org/10.1007/978-3-642-40157-2_37 J. L. Flores. The causal boundary of spacetimes isocausal to standard stationary ones Chapter in Progress in mathematical relativity, gravitation and cosmology Springer, Heidelberg 60 (2014) , 271–275. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3142219 Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds http://dx.doi.org/10.1090/S0065-9266-2013-00680-6 J. L. Flores, J. Herrera, M. Sánchez. Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds Mem. Amer. Math. Soc. 226 (2013) no. 1064 , vi+76. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3136021 The c-boundary construction of spacetimes: application to stationary Kerr spacetime http://dx.doi.org/10.1007/978-1-4614-4897-6_11 J. L. Flores, J. Herrera. The c-boundary construction of spacetimes: application to stationary Kerr spacetime Chapter in Recent trends in Lorentzian geometry Springer, New York 26 (2013) , 243–275. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3064805 Global geodesic properties of Gödel-type spacetimes http://dx.doi.org/10.1007/978-1-4614-4897-6_7 R. Bartolo, A. M. Candela, J. L. Flores. Global geodesic properties of Gödel-type spacetimes Chapter in Recent trends in Lorentzian geometry Springer, New York 26 (2013) , 179–193. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3064801 Causal boundary of spacetimes: revision and applications to AdS/CFT correspondence http://dx.doi.org/10.1007/978-3-0348-0043-3_6 J. L. Flores, J. Herrera, M. Sánchez. Causal boundary of spacetimes: revision and applications to AdS/CFT correspondence Chapter in Quantum field theory and gravity Birkhäuser/Springer Basel AG, Basel (2012) , 97–119. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3074848 On the final definition of the causal boundary and its relation with the conformal boundary http://projecteuclid.org/euclid.atmp/1339438350 J. L. Flores, J. Herrera, M. Sánchez. On the final definition of the causal boundary and its relation with the conformal boundary Adv. Theor. Math. Phys. 15 (2011) no. 4 , 991–1057. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2929681 A note on geodesic connectedness of Gödel type spacetimes http://dx.doi.org/10.1016/j.difgeo.2011.08.006 R. Bartolo, A. M. Candela, J. L. Flores. A note on geodesic connectedness of Gödel type spacetimes Differential Geom. Appl. 29 (2011) no. 6 , 779–786. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2846275 Isocausal spacetimes may have different causal boundaries http://dx.doi.org/10.1088/0264-9381/28/17/175016 J. L. Flores, J. Herrera, M. Sánchez. Isocausal spacetimes may have different causal boundaries Classical Quantum Gravity 28 (2011) no. 17 , 175016, 9. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2837313 Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field http://dx.doi.org/10.1007/s00209-009-0617-5 J. L. Flores, M. A. Javaloyes, P. Piccione. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field Math. Z. 267 (2011) no. 1-2 , 221–233. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2772249 New examples of marginally trapped surfaces and tubes in warped spacetimes http://dx.doi.org/10.1088/0264-9381/27/14/145021 J. L. Flores, S. Haesen, M. Ortega. New examples of marginally trapped surfaces and tubes in warped spacetimes Classical Quantum Gravity 27 (2010) no. 14 , 145021, 18. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2654079 The causal boundary of wave-type spacetimes http://dx.doi.org/10.1088/1126-6708/2008/03/036 J. L. Flores, M. Sánchez. The causal boundary of wave-type spacetimes J. High Energy Phys. (2008) no. 3 , 036, 43. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2391084 Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes http://dx.doi.org/10.1016/j.aim.2008.01.004 A. M. Candela, J. L. Flores, M. Sánchez. Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes Adv. Math. 218 (2008) no. 2 , 515–536. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2407945 The causal boundary of spacetimes revisited http://dx.doi.org/10.1007/s00220-007-0345-9 J. L. Flores. The causal boundary of spacetimes revisited Comm. Math. Phys. 276 (2007) no. 3 , 611–643. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2350432 The causal boundary of product spacetimes http://dx.doi.org/10.1007/s10714-007-0492-5 V. Alaña, J. L. Flores. The causal boundary of product spacetimes Gen. Relativity Gravitation 39 (2007) no. 10 , 1697–1718. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2336097 Topology of the causal boundary for standard static spacetimes http://dx.doi.org/10.1088/0264-9381/24/5/010 J. L. Flores, S. G. Harris. Topology of the causal boundary for standard static spacetimes Classical Quantum Gravity 24 (2007) no. 5 , 1211–1260. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2298927 Structure and topology of the causal boundary for standard static spacetimes http://gigda.ugr.es/digap/?key=MR2368514&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. L. Flores. Structure and topology of the causal boundary for standard static spacetimes Chapter in XIV Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 10 (2006) , 205–210. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2368514 Geodesic connectedness of stationary spacetimes with optimal growth http://dx.doi.org/10.1016/j.geomphys.2005.11.005 R. Bartolo, A. M. Candela, J. L. Flores. Geodesic connectedness of stationary spacetimes with optimal growth J. Geom. Phys. 56 (2006) no. 10 , 2025–2038. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2241736 On the geometry of pp-wave type spacetimes http://dx.doi.org/10.1007/3-540-33484-X_4 J. L. Flores, M. Sánchez. On the geometry of pp-wave type spacetimes Chapter in Analytical and numerical approaches to mathematical relativity Springer, Berlin 692 (2006) , 79–98. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2222548 Periodic orbits on Riemannian manifolds under the action of an at most quadratic potential http://dx.doi.org/10.1016/j.difgeo.2005.08.003 R. Bartolo, A. M. Candela, J. L. Flores, A. Salvatore. Periodic orbits on Riemannian manifolds under the action of an at most quadratic potential Differential Geom. Appl. 24 (2006) no. 2 , 108–118. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2198787 Periodic trajectories in plane wave type spacetimes http://gigda.ugr.es/digap/?key=MR2192662&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. M. Candela, J. L. Flores, A. Salvatore. Periodic trajectories in plane wave type spacetimes Discrete Contin. Dyn. Syst. (2005) no. suppl. , 77–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2192662 Timelike geodesics in stationary Lorentzian manifolds with unbounded coefficients http://gigda.ugr.es/digap/?key=MR2192661&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. M. Candela, J. L. Flores. Timelike geodesics in stationary Lorentzian manifolds with unbounded coefficients Discrete Contin. Dyn. Syst. (2005) no. suppl. , 70–76. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2192661 A classical problem of existence of critical curves with fixed extremes for a Lagrangian http://gigda.ugr.es/digap/?key=MR2123565&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. M. Candela, J. L. Flores, M. Sánchez. A classical problem of existence of critical curves with fixed extremes for a Lagrangian In Proceedings of the XI Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 6 (2004) , 57–66. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2123565 Geodesic connectedness in plane wave type spacetimes. A variational approach http://gigda.ugr.es/digap/?key=MR2117818&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. M. Candela, J. L. Flores, M. Sánchez. Geodesic connectedness in plane wave type spacetimes. A variational approach Chapter in Dynamic systems and applications. Vol. 4 Dynamic, Atlanta, GA (2004) , 458–464. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2117818 On the general structure of Ricci collineations for type B warped space-times http://dx.doi.org/10.1063/1.1775875 J. L. Flores, Y. Parra, U. Percoco. On the general structure of Ricci collineations for type B warped space-times J. Math. Phys. 45 (2004) no. 9 , 3546–3557. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2081643 A quadratic Bolza-type problem in a non-complete Riemannian manifold http://gigda.ugr.es/digap/?key=MR2018114&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. M. Candela, J. L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold Discrete Contin. Dyn. Syst. (2003) no. suppl. , 173–181. (Dynamical systems and differential equations (Wilmington, NC, 2002)) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2018114 Geodesics in static Lorentzian manifolds with critical quadratic behavior http://gigda.ugr.es/digap/?key=MR2017243&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. M. Candela, J. L. Flores, M. Sánchez. Geodesics in static Lorentzian manifolds with critical quadratic behavior Adv. Nonlinear Stud. 3 (2003) no. 4 , 471–494. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2017243 A quadratic Bolza-type problem in a Riemannian manifold http://dx.doi.org/10.1016/S0022-0396(03)00064-0 A. M. Candela, J. L. Flores, M. Sánchez. A quadratic Bolza-type problem in a Riemannian manifold J. Differential Equations 193 (2003) no. 1 , 196–211. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1994064 Causality and conjugate points in general plane waves http://dx.doi.org/10.1088/0264-9381/20/11/322 J. L. Flores, M. Sánchez. Causality and conjugate points in general plane waves Classical Quantum Gravity 20 (2003) no. 11 , 2275–2291. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1984973 On general plane fronted waves. Geodesics http://dx.doi.org/10.1023/A:1022962017685 A. M. Candela, J. L. Flores, M. Sánchez. On general plane fronted waves. Geodesics Gen. Relativity Gravitation 35 (2003) no. 4 , 631–649. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1971289 Geodesics in stationary spacetimes. Application to Kerr spacetime http://gigda.ugr.es/digap/?key=MR2128502&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. L. Flores, M. Sánchez. Geodesics in stationary spacetimes. Application to Kerr spacetime Int. J. Theor. Phys. Group Theory Nonlinear Opt. 8 (2002) no. 3 , 319–336. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2128502 Geodesic connectedness of multiwarped spacetimes http://dx.doi.org/10.1016/S0022-0396(02)00004-9 J. L. Flores, M. Sánchez. Geodesic connectedness of multiwarped spacetimes J. Differential Equations 186 (2002) no. 1 , 1–30. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1941090 A topological method for geodesic connectedness of space-times: outer Kerr space-time http://dx.doi.org/10.1063/1.1506403 J. L. Flores, M. Sánchez. A topological method for geodesic connectedness of space-times: outer Kerr space-time J. Math. Phys. 43 (2002) no. 10 , 4861–4885. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1927337 Geodesic connectedness in some Lorentz manifolds http://gigda.ugr.es/digap/?key=MR1939521&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. L. Flores, M. Sánchez. Geodesic connectedness in some Lorentz manifolds In Proceedings of the VIII Fall Workshop on Geometry and Physics (Spanish) (Medina del Campo, 1999) R. Soc. Mat. Esp., Madrid 2 (2001) , 93–106. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1939521 Geodesic connectedness and conjugate points in GRW space-times http://dx.doi.org/10.1016/S0393-0440(00)00027-9 J. L. Flores, M. Sánchez. Geodesic connectedness and conjugate points in GRW space-times J. Geom. Phys. 36 (2000) no. 3-4 , 285–314. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1793013 Compact Lorentzian holonomy http://dx.doi.org/10.1016/j.difgeo.2016.05.003 M. Gutiérrez, O. Müller. Compact Lorentzian holonomy Differential Geom. Appl. 48 (2016) , 11–22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3534432 Induced Riemannian structures on null hypersurfaces http://onlinelibrary.wiley.com/doi/10.1002/mana.201400355/abstract M. Gutiérrez, B. Olea. Induced Riemannian structures on null hypersurfaces Math. Nachr. (2016) no. , . %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3520713 Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces http://dx.doi.org/10.1016/j.difgeo.2015.05.005 M. Gutiérrez, B. Olea. Totally umbilic null hypersurfaces in generalized Robertson-Walker spaces Differential Geom. Appl. 42 (2015) no. , 15–30. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3397377 Semi-Riemannian manifolds with a doubly warped structure http://dx.doi.org/10.4171/RMI/664 M. Gutiérrez, B. Olea. Semi-Riemannian manifolds with a doubly warped structure Rev. Mat. Iberoam. 28 (2012) no. 1 , 1–24. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2904128 Uniqueness of static decompositions http://dx.doi.org/10.1007/s10455-010-9222-4 M. Gutiérrez, B. Olea. Uniqueness of static decompositions Ann. Global Anal. Geom. 39 (2011) no. 1 , 13–26. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2745502 Equivalence of Cauchy singular boundary and $b$-boundary in $\rm O(3)$-reducible space-times http://dx.doi.org/10.1016/j.geomphys.2009.06.002 M. Gutiérrez. Equivalence of Cauchy singular boundary and $b$-boundary in $\rm O(3)$-reducible space-times J. Geom. Phys. 59 (2009) no. 8 , 1196–1198. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2547338 Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker space http://dx.doi.org/10.1016/j.difgeo.2008.06.015 M. Gutiérrez, B. Olea. Global decomposition of a Lorentzian manifold as a generalized Robertson-Walker space Differential Geom. Appl. 27 (2009) no. 1 , 146–156. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2488998 Semi-Riemannian approach to nonimaging optics http://gigda.ugr.es/digap/?key=MR2497681&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Gutiérrez. Semi-Riemannian approach to nonimaging optics Chapter in Pure and applied differential geometry---PADGE 2007 Shaker Verlag, Aachen (2007) , 132–139. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2497681 Lorentz geometry technique in nonimaging optics http://gigda.ugr.es/digap/?key=MR2018139&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Gutiérrez. Lorentz geometry technique in nonimaging optics Discrete Contin. Dyn. Syst. (2003) no. suppl. , 386–392. (Dynamical systems and differential equations (Wilmington, NC, 2002)) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2018139 Construction of examples of $b$-completion http://dx.doi.org/10.1016/S0362-546X(01)00417-5 A. M. Amores, M. Gutiérrez. Construction of examples of $b$-completion In Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000) 47 (2001) no. 5 , 2959–2970. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1979196 The $b$-completion of the Friedmann space http://dx.doi.org/10.1016/S0393-0440(98)00038-2 A. M. Amores, M. Gutiérrez. The $b$-completion of the Friedmann space J. Geom. Phys. 29 (1999) no. 1-2 , 177–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1668042 Application of Lorentz geometry to nonimaging optics: new three-dimensional ideal concentrators http://dx.doi.org/10.1364/JOSAA.13.000532 M. Gutiérrez, J. C. Miñano, C. Vega, P. Benítez. Application of Lorentz geometry to nonimaging optics: new three-dimensional ideal concentrators J. Opt. Soc. Amer. A 13 (1996) no. 3 , 532–540. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1376289 On invariant connections http://gigda.ugr.es/digap/?key=MR1357421&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. M. Amores, M. Gutiérrez. On invariant connections Chapter in Differential geometry and its applications (Granada, 1994) CIEMAT, Madrid 2 (1995) , 37–41. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1357421 Singularities of invariant connections http://dx.doi.org/10.1007/BF02418211 A. M. Amores, M. Gutiérrez. Singularities of invariant connections Gen. Relativity Gravitation 24 (1992) no. 12 , 1235–1253. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1191997 On the topology of stable causality http://dx.doi.org/10.1007/BF00756183 E. Aguirre-Dabán, M. Gutiérrez. On the topology of stable causality Gen. Relativity Gravitation 21 (1989) no. 1 , 45–59. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR983043 The mean curvature of the second fundamental form of a hypersurface http://gigda.ugr.es/digap/?key=MR2650484&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen, S. Verpoort. The mean curvature of the second fundamental form of a hypersurface Beiträge Algebra Geom. 51 (2010) no. 1 , 155–169. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2650484 Natural intrinsic geometrical symmetries http://gigda.ugr.es/digap/?key=MR2559675&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen, L. Verstraelen. Natural intrinsic geometrical symmetries SIGMA Symmetry Integrability Geom. Methods Appl. 5 (2009) , Paper 086, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2559675 Marginally trapped surfaces in Minkowski 4-space invariant under a rotation subgroup of the Lorentz group http://dx.doi.org/10.1007/s10714-008-0754-x S. Haesen, M. Ortega. Marginally trapped surfaces in Minkowski 4-space invariant under a rotation subgroup of the Lorentz group Gen. Relativity Gravitation 41 (2009) no. 8 , 1819–1834. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2533562 On the Weyl curvature of Deszcz http://gigda.ugr.es/digap/?key=MR2521385&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib B. Jahanara, S. Haesen, Mi. Petrovi\'c-Torga\vsev, L. Verstraelen. On the Weyl curvature of Deszcz Publ. Math. Debrecen 74 (2009) no. 3-4 , 417–431. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2521385 Screw invariant marginally trapped surfaces in Minkowski 4-space http://dx.doi.org/10.1016/j.jmaa.2009.02.019 S. Haesen, M. Ortega. Screw invariant marginally trapped surfaces in Minkowski 4-space J. Math. Anal. Appl. 355 (2009) no. 2 , 639–648. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2521740 On natural symmetries http://gigda.ugr.es/digap/?key=MR2484674&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Deszcz, S. Haesen, L. Verstraelen. On natural symmetries Chapter in Topics in differential geometry Ed. Acad. Române, Bucharest (2008) , 249–308. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2484674 The mean curvature of the second fundamental form http://gigda.ugr.es/digap/?key=MR2448377&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen, S. Verpoort, L. Verstraelen. The mean curvature of the second fundamental form Houston J. Math. 34 (2008) no. 3 , 703–719. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2448377 Optimal inequalities characterising quasi-umbilical submanifolds http://gigda.ugr.es/digap/?key=MR2443744&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Decu, S. Haesen, L. Verstraelen. Optimal inequalities characterising quasi-umbilical submanifolds JIPAM. J. Inequal. Pure Appl. Math. 9 (2008) no. 3 , Article 79, 7. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2443744 Spacelike two-surfaces in static multiply warped product spacetimes http://gigda.ugr.es/digap/?key=MR2390209&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen. Spacelike two-surfaces in static multiply warped product spacetimes Acta Phys. Polon. B 39 (2008) no. 3 , 569–585. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2390209 On the sectional curvature of Deszcz http://gigda.ugr.es/digap/?key=MR2522392&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Haesen, L. Verstraelen. On the sectional curvature of Deszcz An. \c Stiin\c t. Univ. Al. I. Cuza Ia\c si. Mat. (N.S.) 53 (2007) no. suppl. 1 , 181–190. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2522392 Optimal inequalities involving Casorati curvatures http://gigda.ugr.es/digap/?key=MR2446793&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. Decu, S. Haesen, L. Verstraelen. Optimal inequalities involving Casorati curvatures Bull. Transilv. Univ. Bra\c sov Ser. B (N.S.) 14(49) (2007) no. suppl. , 85–93. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2446793 Boost invariant marginally trapped surfaces in Minkowski 4-space http://dx.doi.org/10.1088/0264-9381/24/22/009 S. Haesen, M. Ortega. Boost invariant marginally trapped surfaces in Minkowski 4-space Classical Quantum Gravity 24 (2007) no. 22 , 5441–5452. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2365135 Some characterizations of totally umbilical surfaces in three-dimensional warped product spaces http://dx.doi.org/10.1007/s00605-007-0490-4 S. Haesen. Some characterizations of totally umbilical surfaces in three-dimensional warped product spaces Monatsh. Math. 152 (2007) no. 4 , 303–314. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2358300 Pseudosymmetry collineations http://dx.doi.org/10.1063/1.2789554 S. Haesen, L. Verstraelen. Pseudosymmetry collineations J. Math. Phys. 48 (2007) no. 10 , 102501, 9. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2362781 On the parallel transport of the Ricci curvatures http://dx.doi.org/10.1016/j.geomphys.2007.02.008 B. Jahanara, S. Haesen, Z. Sentürk, L. Verstraelen. On the parallel transport of the Ricci curvatures J. Geom. Phys. 57 (2007) no. 9 , 1771–1777. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2330665 Rigidity and bifurcation results for CMC hypersurfaces in warped product spaces http://dx.doi.org/10.1007/s12220-015-9588-4 S. C. García-Martínez, J. Herrera. Rigidity and bifurcation results for CMC hypersurfaces in warped product spaces J. Geom. Anal. 26 (2016) no. 2 , 1186–1201. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3472833 Computability of the causal boundary by using isocausality http://www.scopus.com/inward/record.url?eid=2-s2.0-84875275928&partnerID=40&md5=1a8e9a52b904a89dd9a8cc2c5d3d2078 J. L. Flores, J. Herrera, M. Sánchez. Computability of the causal boundary by using isocausality Classical and Quantum Gravity 30 (2013) no. 7. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AFlores2013 Penrose's singularity theorem in a Finsler spacetime http://dx.doi.org/10.1088/0264-9381/33/2/025003 A. B. Aazami, M. A. Javaloyes. Penrose's singularity theorem in a Finsler spacetime Classical Quantum Gravity 33 (2016) no. 2 , 025003, 22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3461559 Geodesics and Jacobi fields of pseudo-Finsler manifolds http://dx.doi.org/10.5486/PMD.2015.7028 M. A. Javaloyes, B. L. Soares. Geodesics and Jacobi fields of pseudo-Finsler manifolds Publ. Math. Debrecen 87 (2015) no. 1-2 , 57–78. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3367912 Almost isometries of non-reversible metrics with applications to stationary spacetimes http://dx.doi.org/10.1016/j.geomphys.2014.12.001 M. A. Javaloyes, L. Lichtenfelz, P. Piccione. Almost isometries of non-reversible metrics with applications to stationary spacetimes J. Geom. Phys. 89 (2015) , 38–49. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3305980 On the definition and examples of Finsler metrics http://gigda.ugr.es/digap/?key=MR3331530&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Javaloyes, M. Sánchez. On the definition and examples of Finsler metrics Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) no. 3 , 813–858. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3331530 Corrigendum to ``Chern connection of a pseudo-Finsler metric as a family of affine connections'' [MR3194771] http://gigda.ugr.es/digap/?key=MR3291844&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Javaloyes. Corrigendum to ``Chern connection of a pseudo-Finsler metric as a family of affine connections'' [MR3194771] Publ. Math. Debrecen 85 (2014) no. 3-4 , 481–487. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3291844 Finsler metrics and relativistic spacetimes http://dx.doi.org/10.1142/S0219887814600329 M. A. Javaloyes, M. Sánchez. Finsler metrics and relativistic spacetimes Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 9 , 1460032, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3270295 Chern connection of a pseudo-Finsler metric as a family of affine connections http://gigda.ugr.es/digap/?key=MR3194771&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Javaloyes. Chern connection of a pseudo-Finsler metric as a family of affine connections Publ. Math. Debrecen 84 (2014) no. 1-2 , 29–43. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3194771 Conformally standard stationary spacetimes and Fermat metrics http://dx.doi.org/10.1007/978-1-4614-4897-6_9 M. A. Javaloyes. Conformally standard stationary spacetimes and Fermat metrics Chapter in Recent trends in Lorentzian geometry Springer, New York 26 (2013) , 207–230. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3064803 Addendum to ``Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric'' [Ann. I. H. Poincaré---AN 27 (3) (2010) 857--876] [MR2629883] http://dx.doi.org/10.1016/j.anihpc.2013.03.005 E. Caponio, M. A. Javaloyes, A. Masiello. Addendum to ``Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric'' [Ann. I. H. Poincaré---AN 27 (3) (2010) 857--876] [MR2629883] Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013) no. 5 , 961–968. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3103178 On the interplay between Lorentzian causality and Finsler metrics of Randers type http://dx.doi.org/10.4171/RMI/658 E. Caponio, M. A. Javaloyes, M. Sánchez. On the interplay between Lorentzian causality and Finsler metrics of Randers type Rev. Mat. Iberoam. 27 (2011) no. 3 , 919–952. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2895339 On the energy functional on Finsler manifolds and applications to stationary spacetimes http://dx.doi.org/10.1007/s00208-010-0602-7 E. Caponio, M. A. Javaloyes, A. Masiello. On the energy functional on Finsler manifolds and applications to stationary spacetimes Math. Ann. 351 (2011) no. 2 , 365–392. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2836663 On closed geodesics in the leaf space of singular Riemannian foliations http://dx.doi.org/10.1017/S0017089511000127 M. M. Alexandrino, M. A. Javaloyes. On closed geodesics in the leaf space of singular Riemannian foliations Glasg. Math. J. 53 (2011) no. 3 , 555–568. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2822798 On the semi-Riemannian bumpy metric theorem http://dx.doi.org/10.1112/jlms/jdq099 L. Biliotti, M. A. Javaloyes, P. Piccione. On the semi-Riemannian bumpy metric theorem J. Lond. Math. Soc. (2) 84 (2011) no. 1 , 1–18. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2819687 $t$-periodic light rays in conformally stationary spacetimes via Finsler geometry http://gigda.ugr.es/digap/?key=MR2786549&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib L. Biliotti, M. A. Javaloyes. $t$-periodic light rays in conformally stationary spacetimes via Finsler geometry Houston J. Math. 37 (2011) no. 1 , 127–146. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2786549 Maslov index in semi-Riemannian submersions http://dx.doi.org/10.1007/s10455-010-9200-x E. Caponio, A. Javaloyes, P. Piccione. Maslov index in semi-Riemannian submersions Ann. Global Anal. Geom. 38 (2010) no. 1 , 57–75. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2657842 Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric http://dx.doi.org/10.1016/j.anihpc.2010.01.001 E. Caponio, M. A. Javaloyes, A. Masiello. Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010) no. 3 , 857–876. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2629883 Finsler geodesics in the presence of a convex function and their applications http://dx.doi.org/10.1088/1751-8113/43/13/135207 E. Caponio, A. Javaloyes, A. Masiello. Finsler geodesics in the presence of a convex function and their applications J. Phys. A 43 (2010) no. 13 , 135207, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2602104 Addendum to: Genericity of nondegeneracy for light rays in stationary spacetimes [MR2486667] http://dx.doi.org/10.1007/s00220-009-0980-4 R. Giambò, A. Javaloyes. Addendum to: Genericity of nondegeneracy for light rays in stationary spacetimes [MR2486667] Comm. Math. Phys. 295 (2010) no. 1 , 289–291. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2585999 Pseudo focal points along Lorentzian geodesics and Morse index http://gigda.ugr.es/digap/?key=MR2574374&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Javaloyes, A. Masiello, P. Piccione. Pseudo focal points along Lorentzian geodesics and Morse index Adv. Nonlinear Stud. 10 (2010) no. 1 , 53–82. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2574374 Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index http://dx.doi.org/10.2140/pjm.2009.243.43 M. A. Javaloyes, P. Piccione. Comparison results for conjugate and focal points in semi-Riemannian geometry via Maslov index Pacific J. Math. 243 (2009) no. 1 , 43–56. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2550137 Genericity of nondegenerate critical points and Morse geodesic functionals http://dx.doi.org/10.1512/iumj.2009.58.3642 L. Biliotti, A. Javaloyes, P. Piccione. Genericity of nondegenerate critical points and Morse geodesic functionals Indiana Univ. Math. J. 58 (2009) no. 4 , 1797–1830. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2542980 On the isotropic reduction method and the Maslov index http://gigda.ugr.es/digap/?key=MR2584177&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. Javaloyes, P. Piccione. On the isotropic reduction method and the Maslov index Mat. Contemp. 35 (2008) , 73–93. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2584177 Spectral flow and iteration of closed semi-Riemannian geodesics http://dx.doi.org/10.1007/s00526-008-0170-9 A. Javaloyes, P. Piccione. Spectral flow and iteration of closed semi-Riemannian geodesics Calc. Var. Partial Differential Equations 33 (2008) no. 4 , 439–462. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2438742 A note on the existence of standard splittings for conformally stationary spacetimes http://dx.doi.org/10.1088/0264-9381/25/16/168001 M. A. Javaloyes, M. Sánchez. A note on the existence of standard splittings for conformally stationary spacetimes Classical Quantum Gravity 25 (2008) no. 16 , 168001, 7. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2429739 Iteration of closed geodesics in stationary Lorentzian manifolds http://dx.doi.org/10.1007/s00209-007-0274-5 A. Javaloyes, L. L. de Lima, P. Piccione. Iteration of closed geodesics in stationary Lorentzian manifolds Math. Z. 260 (2008) no. 2 , 277–303. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2429613 A second-order variational principle for the Lorentz force equation: conjugacy and bifurcation http://dx.doi.org/10.1017/S0308210506000497 R. Giambò, M. A. Javaloyes. A second-order variational principle for the Lorentz force equation: conjugacy and bifurcation Proc. Roy. Soc. Edinburgh Sect. A 137 (2007) no. 5 , 923–936. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2359921 On the singularities of the semi-Riemannian exponential map. Bifurcation of geodesics and light rays http://gigda.ugr.es/digap/?key=MR2264010&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Javaloyes, P. Piccione. On the singularities of the semi-Riemannian exponential map. Bifurcation of geodesics and light rays Chapter in Variations on a century of relativity: theory and applications S.I.M. Dep. Mat. Univ. Basilicata, Potenza (2006) , 115–123. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2264010 Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds http://dx.doi.org/10.1016/j.difgeo.2006.02.007 A. Javaloyes, P. Piccione. Conjugate points and Maslov index in locally symmetric semi-Riemannian manifolds Differential Geom. Appl. 24 (2006) no. 5 , 521–541. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2254054 Particles with curvature and torsion in three-dimensional pseudo-Riemannian space forms http://dx.doi.org/10.1016/j.geomphys.2005.09.004 A. Ferrández, J. Guerrero, M. A. Javaloyes, P. Lucas. Particles with curvature and torsion in three-dimensional pseudo-Riemannian space forms J. Geom. Phys. 56 (2006) no. 9 , 1666–1687. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2240416 Spacetime characterizations of $\Lambda$-vacuum metrics with a null Killing 2-form http://dx.doi.org/10.1088/0264-9381/33/19/195004 M. Mars, J. M. M. Senovilla. Spacetime characterizations of $\Lambda$-vacuum metrics with a null Killing 2-form Classical Quantum Gravity 33 (2016) no. 19 , 195004, 26. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3552002 Characterization of (asymptotically) Kerr--de Sitter-like spacetimes at null infinity http://dx.doi.org/10.1088/0264-9381/33/15/155001 M. Mars, T.-T. Paetz, J. M. M. Senovilla, W. Simon. Characterization of (asymptotically) Kerr--de Sitter-like spacetimes at null infinity Classical Quantum Gravity 33 (2016) no. 15 , 155001, 48. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3519681 On the Penrose inequality along null hypersurfaces http://dx.doi.org/10.1088/0264-9381/33/11/115019 M. Mars, A. Soria. On the Penrose inequality along null hypersurfaces Classical Quantum Gravity 33 (2016) no. 11 , 115019, 34. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3502699 Time flat surfaces and the monotonicity of the spacetime Hawking mass II http://dx.doi.org/10.1007/s00023-015-0420-2 Hubert L. Bray, Jeffrey L. Jauregui, M. Mars. Time flat surfaces and the monotonicity of the spacetime Hawking mass II Ann. Henri Poincaré 17 (2016) no. 6 , 1457–1475. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3500221 The asymptotic behaviour of the Hawking energy along null asymptotically flat hypersurfaces http://dx.doi.org/10.1088/0264-9381/32/18/185020 M. Mars, A. Soria. The asymptotic behaviour of the Hawking energy along null asymptotically flat hypersurfaces Classical Quantum Gravity 32 (2015) no. 18 , 185020, 30. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3400227 A spacetime characterization of the Kerr-NUT-(A)de Sitter and related metrics http://dx.doi.org/10.1007/s00023-014-0343-3 M. Mars, J. M. M. Senovilla. A spacetime characterization of the Kerr-NUT-(A)de Sitter and related metrics Ann. Henri Poincaré 16 (2015) no. 7 , 1509–1550. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3356095 Stability of marginally outer trapped surfaces and geometric inequalities http://gigda.ugr.es/digap/?key=MR3329395&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Mars. Stability of marginally outer trapped surfaces and geometric inequalities Chapter in General relativity, cosmology and astrophysics Springer, Cham 177 (2014) , 191–208. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3329395 McGehee regularization of general $\rm SO(3)$-invariant potentials and applications to stationary and spherically symmetric spacetimes http://dx.doi.org/10.1088/0264-9381/31/24/245008 P. Galindo, M. Mars. McGehee regularization of general $\rm SO(3)$-invariant potentials and applications to stationary and spherically symmetric spacetimes Classical Quantum Gravity 31 (2014) no. 24 , 245008, 36. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3285059 Geometry of normal graphs in Euclidean space and applications to the Penrose inequality in Minkowski http://dx.doi.org/10.1007/s00023-013-0296-y M. Mars, A. Soria. Geometry of normal graphs in Euclidean space and applications to the Penrose inequality in Minkowski Ann. Henri Poincaré 15 (2014) no. 10 , 1903–1918. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3257453 On the Bergqvist approach to the Penrose inequality http://dx.doi.org/10.1007/978-3-642-40157-2_46 M. Mars, A. Soria. On the Bergqvist approach to the Penrose inequality Chapter in Progress in mathematical relativity, gravitation and cosmology Springer, Heidelberg 60 (2014) , 321–325. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3142228 Cosmological gravitational waves and Einstein-Straus voids http://dx.doi.org/10.1007/978-3-642-40157-2_6 M. Mars, F. C. Mena, R. Vera. Cosmological gravitational waves and Einstein-Straus voids Chapter in Progress in mathematical relativity, gravitation and cosmology Springer, Heidelberg 60 (2014) , 85–93. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3142188 Geometry of general hypersurfaces, constraint equations and applications to shells http://dx.doi.org/10.1007/978-3-642-40157-2_5 M. Mars. Geometry of general hypersurfaces, constraint equations and applications to shells Chapter in Progress in mathematical relativity, gravitation and cosmology Springer, Heidelberg 60 (2014) , 67–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3142187 Constraint equations for general hypersurfaces and applications to shells http://dx.doi.org/10.1007/s10714-013-1579-9 M. Mars. Constraint equations for general hypersurfaces and applications to shells Gen. Relativity Gravitation 45 (2013) no. 11 , 2175–2221. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3115472 Review on exact and perturbative deformations of the Einstein-Straus model: uniqueness and rigidity results http://dx.doi.org/10.1007/s10714-013-1574-1 M. Mars, F. C. Mena, R. Vera. Review on exact and perturbative deformations of the Einstein-Straus model: uniqueness and rigidity results Gen. Relativity Gravitation 45 (2013) no. 11 , 2143–2173. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3115471 Stability of marginally outer trapped surfaces and applications http://dx.doi.org/10.1007/978-1-4614-4897-6_4 M. Mars. Stability of marginally outer trapped surfaces and applications Chapter in Recent trends in Lorentzian geometry Springer, New York 26 (2013) , 111–138. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3064798 Global and uniqueness properties of stationary and static spacetimes with outer trapped surfaces http://dx.doi.org/10.1007/s00220-013-1739-5 M. Mars, M. Reiris. Global and uniqueness properties of stationary and static spacetimes with outer trapped surfaces Comm. Math. Phys. 322 (2013) no. 2 , 633–666. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3077927 Stability of MOTS in totally geodesic null horizons http://dx.doi.org/10.1088/0264-9381/29/14/145019 M. Mars. Stability of MOTS in totally geodesic null horizons Classical Quantum Gravity 29 (2012) no. 14 , 145019, 23. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2949565 On the Penrose inequality for dust null shells in the Minkowski spacetime of arbitrary dimension http://www.scopus.com/inward/record.url?eid=2-s2.0-84862272379&partnerID=40&md5=9e85d7b2446f6a3b91327ac4a4229ca6 M. Mars, A. Soria. On the Penrose inequality for dust null shells in the Minkowski spacetime of arbitrary dimension Classical and Quantum Gravity 29 (2012) no. 13. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMars2012 Uniqueness theorem for static spacetimes containing marginally outer trapped surfaces http://www.scopus.com/inward/record.url?eid=2-s2.0-80052097247&partnerID=40&md5=5af4b327274bafadb239af731df5aba9 A. Carrasco, M. Mars. Uniqueness theorem for static spacetimes containing marginally outer trapped surfaces Classical and Quantum Gravity 28 (2011) no. 17. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ACarrasco2011 A counterexample to a recent version of the Penrose conjecture http://dx.doi.org/10.1088/0264-9381/27/6/062001 A. Carrasco, M. Mars. A counterexample to a recent version of the Penrose conjecture Classical Quantum Gravity 27 (2010) no. 6 , 062001, 10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2596353 Present status of the Penrose inequality http://dx.doi.org/10.1088/0264-9381/26/19/193001 M. Mars. Present status of the Penrose inequality Classical Quantum Gravity 26 (2009) no. 19 , 193001, 59. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2545137 Stability of marginally outer trapped surfaces and symmetries http://dx.doi.org/10.1088/0264-9381/26/17/175002 A. Carrasco, M. Mars. Stability of marginally outer trapped surfaces and symmetries Classical Quantum Gravity 26 (2009) no. 17 , 175002, 19. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2534321 The time evolution of marginally trapped surfaces http://dx.doi.org/10.1088/0264-9381/26/8/085018 L. Andersson, M. Mars, J. Metzger, W. Simon. The time evolution of marginally trapped surfaces Classical Quantum Gravity 26 (2009) no. 8 , 085018, 14. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2524562 First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models http://gigda.ugr.es/digap/?key=MR2470020&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Mars, F. C. Mena, R. Vera. First order perturbations of the Einstein-Straus and Oppenheimer-Snyder models Phys. Rev. D 78 (2008) no. 8 , 084022, 19. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2470020 Comment on: ``Stationary perfect fluid solutions with differential rotation'' [Gen. Relativity Gravitation \bf 39 (2007), no. 10, 1639--1650; MR2336092] by A. A. Garc\'\i a and J. Tellez Ulloa http://dx.doi.org/10.1007/s10714-008-0631-7 M. Mars, J. M. M. Senovilla. Comment on: ``Stationary perfect fluid solutions with differential rotation'' [Gen. Relativity Gravitation \bf 39 (2007), no. 10, 1639--1650; MR2336092] by A. A. Garc\'\i a and J. Tellez Ulloa Gen. Relativity Gravitation 40 (2008) no. 10 , 2241–2247. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2443370 Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes http://projecteuclid.org/getRecord?id=euclid.atmp/1216046746 L. Andersson, M. Mars, W. Simon. Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes Adv. Theor. Math. Phys. 12 (2008) no. 4 , 853–888. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2420905 On marginally outer trapped surfaces in stationary and static spacetimes http://dx.doi.org/10.1088/0264-9381/25/5/055011 A. Carrasco, M. Mars. On marginally outer trapped surfaces in stationary and static spacetimes Classical Quantum Gravity 25 (2008) no. 5 , 055011, 19. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2392445 Lorentzian and signature changing branes http://gigda.ugr.es/digap/?key=MR2346308&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Mars, J. M. M. Senovilla, R. Vera. Lorentzian and signature changing branes Phys. Rev. D 76 (2007) no. 4 , 044029, 22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2346308 Linear perturbations of matched spacetimes: the gauge problem and background symmetries http://dx.doi.org/10.1088/0264-9381/24/14/008 M. Mars, F. C. Mena, R. Vera. Linear perturbations of matched spacetimes: the gauge problem and background symmetries Classical Quantum Gravity 24 (2007) no. 14 , 3673–3689. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2339414 Stationary axisymmetric exteriors for perturbations of isolated bodies in general relativity, to second order http://gigda.ugr.es/digap/?key=MR2302093&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. A. H. MacCallum, M. Mars, R. Vera. Stationary axisymmetric exteriors for perturbations of isolated bodies in general relativity, to second order Phys. Rev. D 75 (2007) no. 2 , 024017, 19. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2302093 Generalized inverse mean curvature flows in spacetime http://dx.doi.org/10.1007/s00220-007-0203-9 H. Bray, S. Hayward, M. Mars, W. Simon. Generalized inverse mean curvature flows in spacetime Comm. Math. Phys. 272 (2007) no. 1 , 119–138. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2291804 First order perturbations of the Einstein-Straus model http://gigda.ugr.es/digap/?key=MR2279000&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Mars, F. C. Mena, R. Vera. First order perturbations of the Einstein-Straus model Chapter in A century of relativity physics Amer. Inst. Phys. 841 (2006) , 519–522. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2279000 A1: Exact solutions and their interpretation http://dx.doi.org/10.1142/9789812701688_0017 M. Mars. A1: Exact solutions and their interpretation Chapter in General relativity and gravitation World Sci. Publ., Hackensack, NJ (2005) , 169–188. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2196111 First- and second-order perturbations of hypersurfaces http://dx.doi.org/10.1088/0264-9381/22/16/013 M. Mars. First- and second-order perturbations of hypersurfaces Classical Quantum Gravity 22 (2005) no. 16 , 3325–3347. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2159829 Junction conditions in quadratic gravity: thin shells and double layers http://dx.doi.org/10.1088/0264-9381/33/10/105008 B. Reina, J. M. M. Senovilla, R. Vera. Junction conditions in quadratic gravity: thin shells and double layers Classical Quantum Gravity 33 (2016) no. 10 , 105008, 41. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3502676 Corrigendum: Particle production from marginally trapped surfaces of general spacetimes (2015 \it Class. Quantum Grav. \bf 32 085004) [ MR3326936] http://gigda.ugr.es/digap/?key=MR3400229&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla, R. Torres. Corrigendum: Particle production from marginally trapped surfaces of general spacetimes (2015 \it Class. Quantum Grav. \bf 32 085004) [ MR3326936] Classical Quantum Gravity 32 (2015) no. 18 , 189501, 4. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3400229 The 1965 Penrose singularity theorem http://dx.doi.org/10.1088/0264-9381/32/12/124008 J. M. M. Senovilla, David Garfinkle. The 1965 Penrose singularity theorem Classical Quantum Gravity 32 (2015) no. 12 , 124008, 45. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3354531 Particle production from marginally trapped surfaces of general spacetimes http://dx.doi.org/10.1088/0264-9381/32/8/085004 J. M. M. Senovilla, R. Torres. Particle production from marginally trapped surfaces of general spacetimes Classical Quantum Gravity 32 (2015) no. 8 , 085004, 18. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3326936 Black hole formation by incoming electromagnetic radiation http://dx.doi.org/10.1088/0264-9381/32/1/017001 J. M. M. Senovilla. Black hole formation by incoming electromagnetic radiation Classical Quantum Gravity 32 (2015) no. 1 , 017001, 7. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3287026 Umbilical-type surfaces in spacetime http://gigda.ugr.es/digap/?key=Senovilla2013R&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla. Umbilical-type surfaces in spacetime 26 (2013) , 87-110. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2013R Trapped surfaces http://gigda.ugr.es/digap/?key=Senovilla2013B&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla. Trapped surfaces Wprld Scientific, Singapore 26 (2013) , 203-234. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2013B Trapped surfaces in Oppenheimer-Snyder black holes http://dx.doi.org/10.1103/PhysRevD.88.064012 I. Jakobsson E Bengtsson, J. M. M. Senovilla. Trapped surfaces in Oppenheimer-Snyder black holes Phys. Rev. D 88 (2013) no. 6 , 064012, 16 pages. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2013T Particle production from marginally trapped surfaces of general spacetimes http://dx.doi.org/10.1088/0264-9381/32/8/085004 J. M. M. Senovilla, R. Torres. Particle production from marginally trapped surfaces of general spacetimes Class. Quantum Grav. 32 (2015) no. 8 , 085004, 18 pages. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2015Torres Remarks on the stability operator for MOTS http://dx.doi.org/10.1007/978-3-642-40157-2_61 J. M. M. Senovilla. Remarks on the stability operator for MOTS Chapter in Progress in mathematical relativity, gravitation and cosmology Springer, Heidelberg 60 (2014) , 403–407. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3142243 Erratum to: Singularity theorems and their consequences [\refcno 1623229] http://dx.doi.org/10.1007/s10714-014-1746-7 J. M. M. Senovilla. Erratum to: Singularity theorems and their consequences [\refcno 1623229] Gen. Relativity Gravitation 46 (2014) no. 6 , Art. 1746, 1. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3223526 Gravitational double layers http://dx.doi.org/10.1088/0264-9381/31/7/072002 J. M. M. Senovilla. Gravitational double layers Classical Quantum Gravity 31 (2014) no. 7 , 072002, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3176046 Junction conditions for F(R) gravity and their consequences http://dx.doi.org/10.1103/PhysRevD.88.064015 J. M. M. Senovilla. Junction conditions for F(R) gravity and their consequences Phys. Rev. D 88 (2013) no. 6 , 064015, 11 pages. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2013J Erratum to A set of invariant quality factors measuring the deviation from the Kerr metric (Gen Relativ Gravit, 10.1007/s10714-013-1518-9) http://www.scopus.com/inward/record.url?eid=2-s2.0-84877808806&partnerID=40&md5=45cda8525ee842d79d8fb133298e2d35 A.G.-P. Gómez-Lobo, J. M. M. Senovilla. Erratum to A set of invariant quality factors measuring the deviation from the Kerr metric (Gen Relativ Gravit, 10.1007/s10714-013-1518-9) General Relativity and Gravitation 45 (2013) no. 6 , 1129. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AGomez-Lobo20131129 A set of invariant quality factors measuring the deviation from the Kerr metric http://www.scopus.com/inward/record.url?eid=2-s2.0-84877809681&partnerID=40&md5=ffe5ddc59a3355e8e6d4be6bffbf25e1 A.G.-P. Gómez-Lobo, J. M. M. Senovilla. A set of invariant quality factors measuring the deviation from the Kerr metric General Relativity and Gravitation 45 (2013) no. 6 , 1095-1127. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AGmez-Lobo20131095 Singularity Theorems in General Relativity: Achievements and Open Questions http://gigda.ugr.es/digap/?key=Senovilla2012E&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla. Singularity Theorems in General Relativity: Achievements and Open Questions Birkhäuser, N York, USA Einstein Studies 12 (2012) , 305-316. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2012E (Conformally) semisymmetric spaces and special semisymmetric Weyl tensors http://www.scopus.com/inward/record.url?eid=2-s2.0-81455131885&partnerID=40&md5=7e3ec7e069578b4d1d6275500888149f S. B. Edgar, J. M. M. Senovilla. (Conformally) semisymmetric spaces and special semisymmetric Weyl tensors Journal of Physics: Conference Series 314 (2011) no. 1. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AEdgar2011 Second-order symmetric Lorentzian manifolds II: Structure and global properties http://www.scopus.com/inward/record.url?eid=2-s2.0-81455135919&partnerID=40&md5=d8e6b6a4916035c0e176eabd38cbacb4 O. F. Blanco, M. Sánchez, J. M. M. Senovilla. Second-order symmetric Lorentzian manifolds II: Structure and global properties Journal of Physics: Conference Series 314 (2011) no. 1. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ABlanco2011 Singularity theorems assuming trapped submanifolds of arbitrary dimension http://www.scopus.com/inward/record.url?eid=2-s2.0-81455131840&partnerID=40&md5=c2c63bddac3f185871b128acf42c8701 G. J. Galloway, J. M. M. Senovilla. Singularity theorems assuming trapped submanifolds of arbitrary dimension Journal of Physics: Conference Series 314 (2011) no. 1. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AGalloway2011 Erratum: Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor (Classical and Quantum Gravity (2010) 27 (222001)) http://www.scopus.com/inward/record.url?eid=2-s2.0-79959836590&partnerID=40&md5=bed7cbbd58995630e764599812ed1dce J. M. M. Senovilla. Erratum: Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor (Classical and Quantum Gravity (2010) 27 (222001)) Classical and Quantum Gravity 28 (2011) no. 12. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASenovilla2011 Region with trapped surfaces in spherical symmetry, its core, and their boundaries http://www.scopus.com/inward/record.url?eid=2-s2.0-79952213573&partnerID=40&md5=f2074d8aa35c49397cde8afd36ebdaab I. Bengtsson, J. M. M. Senovilla. Region with trapped surfaces in spherical symmetry, its core, and their boundaries Physical Review D - Particles, Fields, Gravitation and Cosmology 83 (2011) no. 4. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ABengtsson2011 Trapped surfaces http://dx.doi.org/10.1142/S0218271811020354 J. M. M. Senovilla. Trapped surfaces Internat. J. Modern Phys. D 20 (2011) no. 11 , 2139–2168. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2847406 Singularity theorems based on trapped submanifolds of arbitrary co-dimension http://dx.doi.org/10.1088/0264-9381/27/15/152002 G. J. Galloway, J. M. M. Senovilla. Singularity theorems based on trapped submanifolds of arbitrary co-dimension Classical Quantum Gravity 27 (2010) no. 15 , 152002, 10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2659235 Note on (conformally) semi-symmetric spacetimes http://dx.doi.org/10.1088/0264-9381/27/2/027001 I. Eriksson, J. M. M. Senovilla. Note on (conformally) semi-symmetric spacetimes Classical Quantum Gravity 27 (2010) no. 2 , 027001, 5. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2578718 Algebraic classification of the Weyl tensor in higher dimensions based on its “superenergy” tensor http://dx.doi.org/10.1088/0264-9381/27/22/222001 J. M. M. Senovilla. Algebraic classification of the Weyl tensor in higher dimensions based on its “superenergy” tensor Class. Quantum Grav. 27 (2010) no. 22 , 222001, 7 pages. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3A Note on trapped surfaces in the Vaidya solution http://gigda.ugr.es/digap/?key=MR2491178&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib I. Bengtsson, J. M. M. Senovilla. Note on trapped surfaces in the Vaidya solution Phys. Rev. D 79 (2009) no. 2 , 024027, 6. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2491178 Second-order symmetric Lorentzian manifolds. I. Characterization and general results http://dx.doi.org/10.1088/0264-9381/25/24/245011 J. M. M. Senovilla. Second-order symmetric Lorentzian manifolds. I. Characterization and general results Classical Quantum Gravity 25 (2008) no. 24 , 245011, 25. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2461164 A reformulation of the hoop conjecture http://dx.doi.org/10.1209/0295-5075/81/20004 J. M. M. Senovilla. A reformulation of the hoop conjecture Europhys. Lett. EPL 81 (2008) no. 2 , Art. 20004, 6. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2443952 Summary of session A1: exact solutions and their interpretation http://dx.doi.org/10.1088/0264-9381/25/11/114014 J. M. M. Senovilla. Summary of session A1: exact solutions and their interpretation Classical Quantum Gravity 25 (2008) no. 11 , 114014, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2430508 A note on the uniqueness of global static decompositions http://dx.doi.org/10.1088/0264-9381/24/23/N01 M. Sánchez, J. M. M. Senovilla. A note on the uniqueness of global static decompositions Classical Quantum Gravity 24 (2007) no. 23 , 6121–6126. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2371928 The Schwarzschild solution: corrections to the editorial note: ``Comment on: `On the gravitational field of a mass point according to Einstein's theory'\,'' [Gen. Relativity Gravitation \bf 35 (2003), no. 5, 945--950; MR1982196] by S. Antoci and D.-E. Liebscher http://dx.doi.org/10.1007/s10714-006-0326-x J. M. M. Senovilla. The Schwarzschild solution: corrections to the editorial note: ``Comment on: `On the gravitational field of a mass point according to Einstein's theory'\,'' [Gen. Relativity Gravitation \bf 35 (2003), no. 5, 945--950; MR1982196] by S. Antoci and D.-E. Liebscher Gen. Relativity Gravitation 39 (2007) no. 5 , 685–693. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2322589 Symmetric hyperbolic systems for a large class of fields in arbitrary dimension http://dx.doi.org/10.1007/s10714-006-0390-2 J. M. M. Senovilla. Symmetric hyperbolic systems for a large class of fields in arbitrary dimension Gen. Relativity Gravitation 39 (2007) no. 3 , 361–386. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2322655 Classification of spacelike surfaces in spacetime http://dx.doi.org/10.1088/0264-9381/24/11/020 J. M. M. Senovilla. Classification of spacelike surfaces in spacetime Classical Quantum Gravity 24 (2007) no. 11 , 3091–3124. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2330911 Second-order symmetric Lorentzian manifolds http://gigda.ugr.es/digap/?key=MR2278986&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla. Second-order symmetric Lorentzian manifolds Chapter in A century of relativity physics Amer. Inst. Phys. 841 (2006) , 370–377. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2278986 A weighted de Rham operator leading to local potentials for Riemann and Weyl tensors http://gigda.ugr.es/digap/?key=MR2278979&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. B. Edgar, J. M. M. Senovilla. A weighted de Rham operator leading to local potentials for Riemann and Weyl tensors Chapter in A century of relativity physics Amer. Inst. Phys. 841 (2006) , 291–297. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2278979 The universal `energy' operator http://dx.doi.org/10.1088/0264-9381/23/23/N01 J. M. M. Senovilla. The universal `energy' operator Classical Quantum Gravity 23 (2006) no. 23 , 7143–7147. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2271165 A weighted de Rham operator acting on arbitrary tensor fields and their local potentials http://dx.doi.org/10.1016/j.geomphys.2005.11.011 S. B. Edgar, J. M. M. Senovilla. A weighted de Rham operator acting on arbitrary tensor fields and their local potentials J. Geom. Phys. 56 (2006) no. 10 , 2135–2162. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2241742 Mathematicians and cosmology http://gigda.ugr.es/digap/?key=MR2216155&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. M. M. Senovilla. Mathematicians and cosmology Gac. R. Soc. Mat. Esp. 8 (2005) no. 3 , 597–636. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2216155 Causal structures and causal boundaries http://dx.doi.org/10.1088/0264-9381/22/9/R01 A. García-Parrado, J. M. M. Senovilla. Causal structures and causal boundaries Classical Quantum Gravity 22 (2005) no. 9 , R1–R84. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2136105 On the topology of translating solitons of the mean curvature flow http://dx.doi.org/10.1007/s00526-015-0886-2 Francisco Mart\'\i n, Andreas Savas-Halilaj, Knut Smoczyk. On the topology of translating solitons of the mean curvature flow Calc. Var. Partial Differential Equations 54 (2015) no. 3 , 2853–2882. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3412395 Properly embedded, area-minimizing surfaces in hyperbolic 3-space http://projecteuclid.org/euclid.jdg/1406033978 F. Martín, B. White. Properly embedded, area-minimizing surfaces in hyperbolic 3-space J. Differential Geom. 97 (2014) no. 3 , 515–544. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3263513 A construction of a complete bounded null curve in $\bf C^3$ http://dx.doi.org/10.2996/kmj/1396008249 L. Ferrer, F. Martín, M. Umehara, K. Yamada. A construction of a complete bounded null curve in $\bf C^3$ Kodai Math. J. 37 (2014) no. 1 , 59–96. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3189515 Flat surfaces in hyperbolic 3-space whose hyperbolic Gauss maps are bounded http://dx.doi.org/10.4171/RMI/779 F. Martín, M. Umehara, K. Yamada. Flat surfaces in hyperbolic 3-space whose hyperbolic Gauss maps are bounded Rev. Mat. Iberoam. 30 (2014) no. 1 , 309–316. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3186941 Minimal surfaces with positive genus and finite total curvature in $\Bbb H^2\times\Bbb R$ http://dx.doi.org/10.2140/gt.2014.18.141 F. Martín, R. Mazzeo, M. M. Rodríguez. Minimal surfaces with positive genus and finite total curvature in $\Bbb H^2\times\Bbb R$ Geom. Topol. 18 (2014) no. 1 , 141–177. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3158774 Non-simply connected minimal planar domains in $\BbbH^2\times\BbbR$ http://dx.doi.org/10.1090/S0002-9947-2013-05794-7 F. Martín, M. M. Rodríguez. Non-simply connected minimal planar domains in $\BbbH^2\times\BbbR$ Trans. Amer. Math. Soc. 365 (2013) no. 12 , 6167–6183. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3105746 Erratum to: Complete bounded null curves immersed in $\BbbC^3$ and $\rm SL(2, \BbbC)$ [MR2507616] http://dx.doi.org/10.1007/s00526-012-0541-0 F. Martin, M. Umehara, K. Yamada. Erratum to: Complete bounded null curves immersed in $\BbbC^3$ and $\rm SL(2, \BbbC)$ [MR2507616] Calc. Var. Partial Differential Equations 46 (2013) no. 1-2 , 439–440. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3004812 Calabi-Yau domains in three manifolds http://dx.doi.org/10.1353/ajm.2012.0037 F. Martín, III W. H. Meeks. Calabi-Yau domains in three manifolds Amer. J. Math. 134 (2012) no. 5 , 1329–1344. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2975238 Existence of proper minimal surfaces of arbitrary topological type http://dx.doi.org/10.1016/j.aim.2012.05.007 L. Ferrer, F. Martín, III W. H. Meeks. Existence of proper minimal surfaces of arbitrary topological type Adv. Math. 231 (2012) no. 1 , 378–413. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2935393 An extension of Krust's theorem for minimal surfaces http://gigda.ugr.es/digap/?key=MR2953855&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib F. Martín, C. Reyes. An extension of Krust's theorem for minimal surfaces Chapter in Florentino Garc\'\i a Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 115–117. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2953855 Complete bounded holomorphic curves immersed in $\Bbb C^2$ with arbitrary genus http://dx.doi.org/10.1090/S0002-9939-09-09953-5 F. Martin, M. Umehara, K. Yamada. Complete bounded holomorphic curves immersed in $\Bbb C^2$ with arbitrary genus Proc. Amer. Math. Soc. 137 (2009) no. 10 , 3437–3450. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2515413 Complete bounded null curves immersed in $\Bbb C^3$ and $\rm SL(2,\Bbb C)$ http://dx.doi.org/10.1007/s00526-009-0226-5 F. Martin, M. Umehara, K. Yamada. Complete bounded null curves immersed in $\Bbb C^3$ and $\rm SL(2,\Bbb C)$ Calc. Var. Partial Differential Equations 36 (2009) no. 1 , 119–139. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2507616 Density theorems for complete minimal surfaces in $\Bbb R^3$ http://dx.doi.org/10.1007/s00039-008-0650-2 A. Alarcón, L. Ferrer, F. Martín. Density theorems for complete minimal surfaces in $\Bbb R^3$ Geom. Funct. Anal. 18 (2008) no. 1 , 1–49. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2399094 A Jordan curve spanned by a complete minimal surface http://dx.doi.org/10.1007/s00205-006-0023-7 F. Martín, N. Nadirashvili. A Jordan curve spanned by a complete minimal surface Arch. Ration. Mech. Anal. 184 (2007) no. 2 , 285–301. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2299764 Bounded domains which are universal for minimal surfaces http://dx.doi.org/10.1353/ajm.2007.0013 F. Martín, III W. H. Meeks, N. Nadirashvili. Bounded domains which are universal for minimal surfaces Amer. J. Math. 129 (2007) no. 2 , 455–461. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2306042 A uniqueness theorem for the singly periodic genus-one helicoid http://dx.doi.org/10.1090/S0002-9947-07-04093-7 A. Alarcón, L. Ferrer, F. Martín. A uniqueness theorem for the singly periodic genus-one helicoid Trans. Amer. Math. Soc. 359 (2007) no. 6 , 2819–2829. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2286058 The embedded singly periodic Scherk-Costa surfaces http://dx.doi.org/10.1007/s00208-006-0778-z F. Martín, V. Ramos Batista. The embedded singly periodic Scherk-Costa surfaces Math. Ann. 336 (2006) no. 1 , 155–189. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2242622 Complete proper minimal surfaces in convex bodies of $\Bbb R^3$. II. The behavior of the limit set http://dx.doi.org/10.4171/CMH/70 F. Martín, S. Morales. Complete proper minimal surfaces in convex bodies of $\Bbb R^3$. II. The behavior of the limit set Comment. Math. Helv. 81 (2006) no. 3 , 699–725. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2250860 Complete nonorientable minimal surfaces in a ball of $\Bbb R^3$ http://dx.doi.org/10.1090/S0002-9947-06-04004-9 F. J. López, F. Martin, S. Morales. Complete nonorientable minimal surfaces in a ball of $\Bbb R^3$ Trans. Amer. Math. Soc. 358 (2006) no. 9 , 3807–3820 (electronic). MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2219000 On the singly periodic genus one helicoid http://gigda.ugr.es/digap/?key=MR2220703&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Alarcón, L. Ferrer, F. Martín. On the singly periodic genus one helicoid Differ. Geom. Dyn. Syst. 8 (2006) , 1–7 (electronic). MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2220703 Minimal surfaces with helicoidal ends http://dx.doi.org/10.1007/s00209-005-0777-x L. Ferrer, F. Martín. Minimal surfaces with helicoidal ends Math. Z. 250 (2005) no. 4 , 807–839. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2180376 Canonical variation of a Lorentzian metric http://dx.doi.org/10.1016/j.jmaa.2014.04.064 B. Olea. Canonical variation of a Lorentzian metric J. Math. Anal. Appl. 419 (2014) no. 1 , 156–171. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3217141 A fundamental theorem for hypersurfaces in semi-Riemannian warped products http://dx.doi.org/10.1016/j.geomphys.2015.01.002 Marie-Amélie Lawn, Miguel Ortega. A fundamental theorem for hypersurfaces in semi-Riemannian warped products J. Geom. Phys. 90 (2015) , 55–70. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3317697 Massless particles in generalized Robertson-Walker 4-spacetimes http://dx.doi.org/10.1007/s10231-013-0374-2 M. A. Cañadas-Pinedo, M. Gutiérrez, M. Ortega. Massless particles in generalized Robertson-Walker 4-spacetimes Ann. Mat. Pura Appl. (4) 194 (2015) no. 1 , 259–273. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3303015 Notes on Florentino's scientific production http://gigda.ugr.es/digap/?key=MR2953857&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, Juan D. Pérez, Y. J. Suh. Notes on Florentino's scientific production Chapter in F. Garc\'\i a Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 129–144. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2953857 Rotational surfaces in Lorentz-Minkowski space http://gigda.ugr.es/digap/?key=MR2497689&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega. Rotational surfaces in Lorentz-Minkowski space Chapter in Pure and applied differential geometry---PADGE 2007 Shaker Verlag, Aachen (2007) , 194–202. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2497689 Total curvature of some curves in 3-dimensional Lorentzian warped products http://gigda.ugr.es/digap/?key=MR2333233&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega. Total curvature of some curves in 3-dimensional Lorentzian warped products In Proceedings of the Eleventh International Workshop on Differential Geometry Kyungpook Nat. Univ. (2007) , 85–92. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2333233 Massless particles in three-dimensional Lorentzian warped products http://dx.doi.org/10.1063/1.2409522 J. L. Cabrerizo, M. Fernandez, M. Ortega. Massless particles in three-dimensional Lorentzian warped products J. Math. Phys. 48 (2007) no. 1 , 012901, 12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2292611 Real hypersurfaces with constant totally real bisectional curvature in complex space forms http://dx.doi.org/10.1007/s10587-006-0024-6 M. Ortega, J. D. Pérez, Y. J. Suh. Real hypersurfaces with constant totally real bisectional curvature in complex space forms Czechoslovak Math. J. 56(131) (2006) no. 2 , 377–388. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2291743 Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms http://dx.doi.org/10.1216/rmjm/1181069385 M. Ortega, J. D. Pérez, F. G. Santos. Non-existence of real hypersurfaces with parallel structure Jacobi operator in nonflat complex space forms Rocky Mountain J. Math. 36 (2006) no. 5 , 1603–1613. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2285303 Congruence classes of Frenet curves in complex quadrics http://dx.doi.org/10.1007/s00022-005-0001-5 M. Kimura, M. Ortega. Congruence classes of Frenet curves in complex quadrics J. Geom. 83 (2005) no. 1-2 , 121–136. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2193231 Invariant affine connections on odd-dimensional spheres http://dx.doi.org/10.1007/s10455-015-9489-6 C. Draper, A. Garvín, F. J. Palomo. Invariant affine connections on odd-dimensional spheres Ann. Global Anal. Geom. 49 (2016) no. 3 , 213–251. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3485984 A new characterization of the $n$-dimensional Einstein static spacetime http://dx.doi.org/10.1016/j.geomphys.2014.03.010 F. J. Palomo. A new characterization of the $n$-dimensional Einstein static spacetime J. Geom. Phys. 81 (2014) , 112–116. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3194219 The fibre bundle of degenerate tangent planes of a Lorentzian manifold and the smoothness of the null sectional curvature http://dx.doi.org/10.1016/j.difgeo.2007.06.013 F. J. Palomo. The fibre bundle of degenerate tangent planes of a Lorentzian manifold and the smoothness of the null sectional curvature Differential Geom. Appl. 25 (2007) no. 6 , 667–673. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2373942 Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces http://dx.doi.org/10.1016/j.difgeo.2016.10.004 J. D. Pérez. Lie derivatives and structure Jacobi operator on real hypersurfaces in complex projective spaces Differential Geom. Appl. 50 (2017) , 1–10. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3588636 A classification of three-dimensional real hypersurfaces in non-flat complex space forms in terms of their generalized Tanaka-Webster Lie derivative http://dx.doi.org/10.4153/CMB-2016-042-2 G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A classification of three-dimensional real hypersurfaces in non-flat complex space forms in terms of their generalized Tanaka-Webster Lie derivative Canad. Math. Bull. 59 (2016) no. 4 , 813–823. (Paging previously given as: 1--11) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3563760 Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor in the GTW connection http://dx.doi.org/10.4153/CMB-2016-035-x J. D. Pérez, H Lee, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor in the GTW connection Canad. Math. Bull. 59 (2016) no. 4 , 721–733. (Paging previously given as: 1--13) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3563752 Comparing Lie derivatives on real hypersurfaces in complex projective spaces http://dx.doi.org/10.1007/s00009-015-0601-8 J. D. Pérez. Comparing Lie derivatives on real hypersurfaces in complex projective spaces Mediterr. J. Math. 13 (2016) no. 4 , 2161–2169. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3530923 Lie derivatives on a real hypersurface in complex two-plane Grassmannians http://dx.doi.org/10.5486/PMD.2016.7295 J. D. Pérez. Lie derivatives on a real hypersurface in complex two-plane Grassmannians Publ. Math. Debrecen 89 (2016) no. 1-2 , 63–71. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3529261 The structure Jacobi operator of three-dimensional real hypersurfaces in non-flat complex space forms http://dx.doi.org/10.2996/kmj/1458651697 G. Kaimakamis, K. Panagiotidou, J. D. Pérez. The structure Jacobi operator of three-dimensional real hypersurfaces in non-flat complex space forms Kodai Math. J. 39 (2016) no. 1 , 154–174. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3478276 Real hypersurfaces in non-flat complex space form with structure Jacobi operator of Lie-Codazzi type http://dx.doi.org/10.1007/s40840-015-0161-x G. Kaimakamis, K. Panagiotidou, J. D. Pérez. Real hypersurfaces in non-flat complex space form with structure Jacobi operator of Lie-Codazzi type Bull. Malays. Math. Sci. Soc. 39 (2016) no. 1 , 17–27. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3439846 Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space http://dx.doi.org/10.1007/s10231-014-0444-0 J. D. Pérez. Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space Ann. Mat. Pura Appl. (4) 194 (2015) no. 6 , 1781–1794. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3419917 Real hypersurfaces in complex two-plane Grassmannians with GTW harmonic curvature http://dx.doi.org/10.4153/CMB-2015-039-7 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians with GTW harmonic curvature Canad. Math. Bull. 58 (2015) no. 4 , 835–845. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3415673 On the Lie derivative of real hypersurfaces in $\Bbb CP^2$ and $\Bbb CH^2$ with respect to the generalized Tanaka-Webster connection http://dx.doi.org/10.4134/BKMS.2015.52.5.1621 K. Panagiotidou, J. D. Pérez. On the Lie derivative of real hypersurfaces in $\Bbb CP^2$ and $\Bbb CH^2$ with respect to the generalized Tanaka-Webster connection Bull. Korean Math. Soc. 52 (2015) no. 5 , 1621–1630. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3406024 The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians http://dx.doi.org/10.1142/S0129167X15500755 K. Panagiotidou, J. D. Pérez. The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians Internat. J. Math. 26 (2015) no. 9 , 1550075, 14. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3391662 Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator http://dx.doi.org/10.1515/math-2015-0046 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator Open Math. 13 (2015) , 493–501. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3391385 Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space http://dx.doi.org/10.1007/s00605-015-0777-9 J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space Monatsh. Math. 177 (2015) no. 4 , 637–647. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3371367 Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians http://dx.doi.org/10.1007/s10587-015-0196-z E. Pak, J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians Czechoslovak Math. J. 65(140) (2015) no. 2 , 569–577. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3360447 A new condition on the structure Jacobi operator of real hypersurfaces in non-flat complex space forms http://dx.doi.org/10.1007/s00009-014-0415-0 G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A new condition on the structure Jacobi operator of real hypersurfaces in non-flat complex space forms Mediterr. J. Math. 12 (2015) no. 2 , 525–540. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3350324 Commuting conditions of the $k$-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms http://dx.doi.org/10.1515/math-2015-0032 K. Panagiotidou, J. D. Pérez. Commuting conditions of the $k$-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms Open Math. 13 (2015) , 321–332. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3349349 Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection http://dx.doi.org/10.3906/mat-1403-74 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection Turkish J. Math. 39 (2015) no. 3 , 313–321. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3343486 Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator http://dx.doi.org/10.1007/s10587-015-0169-2 E. Pak, J. D. Pérez, C. J. G. Machado, C. Woo. Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator Czechoslovak Math. J. 65(140) (2015) no. 1 , 207–218. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3336034 Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.1007/s10114-015-1765-7 C. J. G. Machado, J. D. Pérez, Young Jin Suh. Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians Acta Math. Sin. (Engl. Ser.) 31 (2015) no. 1 , 111–122. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3285950 $\Bbb D$-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.1007/s10231-012-0292-8 C. J. G. Machado, J. D. Pérez, I. Jeong, Y. J. Suh. $\Bbb D$-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians Ann. Mat. Pura Appl. (4) 193 (2014) no. 2 , 591–608. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3180935 Real hypersurfaces of Codazzi type in complex two-plane Grassmannians http://gigda.ugr.es/digap/?key=MR3151698&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib C. J. G. Machado, J. D. Pérez, Y. J. Suh. Real hypersurfaces of Codazzi type in complex two-plane Grassmannians Bull. Malays. Math. Sci. Soc. (2) 37 (2014) no. 1 , 123–128. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3151698 A characterization of certain geodesic hyperspheres in complex projective space http://dx.doi.org/10.3906/mat-1209-24 J. D. Pérez, Y. J. Suh. A characterization of certain geodesic hyperspheres in complex projective space Turkish J. Math. 38 (2014) no. 1 , 139–153. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3144169 Lie derivatives on real hypersurfaces of non-flat complex space forms http://gigda.ugr.es/digap/?key=MR3203378&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, G. Kaimakamis, K. Panagiotidou, Y. J. Suh. Lie derivatives on real hypersurfaces of non-flat complex space forms In Proceedings of the 17th International Workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential Geometry Workshop [Vol. 17] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2013) , 21–30. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3203378 A characterization of type $A$ real hypersurfaces in complex projective space http://dx.doi.org/10.5486/PMD.2013.5712 J. D. Pérez, Y. J. Suh. A characterization of type $A$ real hypersurfaces in complex projective space Publ. Math. Debrecen 83 (2013) no. 4 , 707–714. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3150837 Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.4134/BKMS.2013.50.2.525 I. Jeong, J. D. Pérez, Y. J. Suh. Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians Bull. Korean Math. Soc. 50 (2013) no. 2 , 525–536. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3137699 Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\BbbD$-parallel http://dx.doi.org/10.4153/CMB-2011-193-6 J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\BbbD$-parallel Canad. Math. Bull. 56 (2013) no. 2 , 306–316. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3043058 $\germ D$-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians http://gigda.ugr.es/digap/?key=MR3014829&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib C. J. G. Machado, J. D. Pérez, I. Jeong, Y. J. Suh. $\germ D$-parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians In Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop [Volume 16] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2012) , 161–174. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3014829 Generalized Tanaka-Webster connection on real hypersurfaces of complex projective space http://gigda.ugr.es/digap/?key=MR3014818&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster connection on real hypersurfaces of complex projective space In Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop [Volume 16] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2012) , 47–54. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3014818 Generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians http://gigda.ugr.es/digap/?key=MR3014817&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib C. J. G. Machado, J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster connection on real hypersurfaces in complex two-plane Grassmannians In Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop [Volume 16] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2012) , 35–46. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3014817 Compact real hypersurfaces in complex two-plane Grassmannians http://gigda.ugr.es/digap/?key=MR2954648&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, J. T. Oh, Y. J. Suh. Compact real hypersurfaces in complex two-plane Grassmannians Houston J. Math. 38 (2012) no. 2 , 469–492. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2954648 Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are $\xi$-invariant http://dx.doi.org/10.1142/S0129167X1100746X C. J. G. Machado, J. D. Pérez. Real hypersurfaces in complex two-plane Grassmannians some of whose Jacobi operators are $\xi$-invariant Internat. J. Math. 23 (2012) no. 3 , 1250002, 12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2902282 On the structure vector field of a real hypersurface in complex two-plane Grassmannians http://dx.doi.org/10.2478/s11533-012-0004-z C. J. G. Machado, J. D. Pérez. On the structure vector field of a real hypersurface in complex two-plane Grassmannians Cent. Eur. J. Math. 10 (2012) no. 2 , 451–455. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2886552 Compact real hypersurfaces in complex two-plane Grassmannians http://gigda.ugr.es/digap/?key=MR2894281&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, J. T. Oh, Y. J. Suh. Compact real hypersurfaces in complex two-plane Grassmannians In Proceedings of the 15th International Workshop on Differential Geometry and the 4th KNUGRG-OCAMI Differential Geometry Workshop [Volume 15] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2011) , 83–98. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2894281 Two conditions on the structure Jacobi operator for real hypersurfaces in complex projective space http://dx.doi.org/10.4153/CMB-2011-020-4 J. D. Pérez, Y. J. Suh. Two conditions on the structure Jacobi operator for real hypersurfaces in complex projective space Canad. Math. Bull. 54 (2011) no. 3 , 422–429. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2857917 Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\bot$-parallel structure Jacobi operator http://dx.doi.org/10.1142/S0129167X11006957 I. Jeong, C. J. G. Machado, J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\bot$-parallel structure Jacobi operator Internat. J. Math. 22 (2011) no. 5 , 655–673. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2799883 Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type http://dx.doi.org/10.2478/s11533-011-0022-2 C. J. G. Machado, J. D. Pérez, I. Jeong, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type Cent. Eur. J. Math. 9 (2011) no. 3 , 578–582. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2784029 Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\perp$-parallel structure Jacobi operator http://gigda.ugr.es/digap/?key=MR2757818&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib I. Jeong, C. J. G. Machado, J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\perp$-parallel structure Jacobi operator In Proceedings of the 14th International Workshop on Differential Geometry and the 3rd KNUGRG-OCAMI Differential Geometry Workshop [Volume 14] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2010) , 189–201. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2757818 Real hypersurfaces in a complex projective space with pseudo-$\Bbb D$-parallel structure Jacobi operator http://dx.doi.org/10.1007/s10587-010-0066-7 H. Lee, J. D. Pérez, Y. J. Suh. Real hypersurfaces in a complex projective space with pseudo-$\Bbb D$-parallel structure Jacobi operator Czechoslovak Math. J. 60(135) (2010) no. 4 , 1025–1036. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2738963 Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\perp$-parallel Lie derivatives http://gigda.ugr.es/digap/?key=MR2726999&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib Y. J. Suh, J. D. Pérez, H. J. Jin, H. Y. Yang. Real hypersurfaces in complex two-plane Grassmannians with $\germ D^\perp$-parallel Lie derivatives Houston J. Math. 36 (2010) no. 3 , 711–726. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2726999 Generalized Einstein real hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.1016/j.geomphys.2010.06.017 J. D. Pérez, Y. J. Suh, Y. Watanabe. Generalized Einstein real hypersurfaces in complex two-plane Grassmannians J. Geom. Phys. 60 (2010) no. 11 , 1806–1818. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2679423 Real hypersurfaces in a complex projective space with pseudo-$\Bbb D$-parallel structure Jacobi operator http://gigda.ugr.es/digap/?key=MR2641135&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib H. Lee, J. D. Pérez, Y. J. Suh. Real hypersurfaces in a complex projective space with pseudo-$\Bbb D$-parallel structure Jacobi operator In Proceedings of the 13th International Workshop on Differential Geometry and Related Fields [Vol. 13] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2009) , 213–220. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2641135 On the structure Jacobi operator of a real hypersurface in complex projective space http://dx.doi.org/10.1007/s00605-008-0025-7 H. Jin Lee, J. D. Pérez, F. G. Santos, Y. J. Suh. On the structure Jacobi operator of a real hypersurface in complex projective space Monatsh. Math. 158 (2009) no. 2 , 187–194. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2552269 Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel http://dx.doi.org/10.5666/KMJ.2009.49.2.211 J. D. Pérez, F. G. Santos. Real hypersurfaces in complex projective space whose structure Jacobi operator is cyclic-Ryan parallel Kyungpook Math. J. 49 (2009) no. 2 , 211–219. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2554880 Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies $\scr L_\xi R_\xi=\nabla_\xi R_\xi$ http://dx.doi.org/10.1216/RMJ-2009-39-4-1293 J. D. Pérez, F. G. Santos. Real hypersurfaces in complex projective space whose structure Jacobi operator satisfies $\scr L_\xi R_\xi=\nabla_\xi R_\xi$ Rocky Mountain J. Math. 39 (2009) no. 4 , 1293–1301. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2524715 Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator http://dx.doi.org/10.1007/s10474-008-8004-y I. Jeong, J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator Acta Math. Hungar. 122 (2009) no. 1-2 , 173–186. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2487469 Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator http://gigda.ugr.es/digap/?key=MR2509190&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib I. Jeong, J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with parallel structure Jacobi operator In Proceedings of the 12th International Workshop on Differential Geometry and Related Fields [Vol. 12] Korean Math. Soc., Seoul (2008) , 69–89. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2509190 Real hypersurfaces in complex space forms with commuting structure Jacobi operator http://gigda.ugr.es/digap/?key=MR2509189&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, F. G. Santos, Y. J. Suh. Real hypersurfaces in complex space forms with commuting structure Jacobi operator In Proceedings of the 12th International Workshop on Differential Geometry and Related Fields [Vol. 12] Korean Math. Soc., Seoul (2008) , 59–67. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2509189 On derivatives of the structure Jacobi operator of a real hypersurface in complex projective space http://gigda.ugr.es/digap/?key=MR2509188&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, F. G. Santos. On derivatives of the structure Jacobi operator of a real hypersurface in complex projective space In Proceedings of the 12th International Workshop on Differential Geometry and Related Fields [Vol. 12] Korean Math. Soc., Seoul (2008) , 43–57. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2509188 Real hypersurfaces in complex projective space with recurrent structure Jacobi operator http://dx.doi.org/10.1016/j.difgeo.2007.11.015 J. D. Pérez, F. G. Santos. Real hypersurfaces in complex projective space with recurrent structure Jacobi operator Differential Geom. Appl. 26 (2008) no. 2 , 218–223. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2408274 Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator http://dx.doi.org/10.1007/s10474-007-6091-9 J. D. Pérez, I. Jeong, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator Acta Math. Hungar. 117 (2007) no. 3 , 201–217. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2361601 Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator http://gigda.ugr.es/digap/?key=MR2350075&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, F. G. Santos, Y. Jin Suh. Real hypersurfaces in nonflat complex space forms with commuting structure Jacobi operator Houston J. Math. 33 (2007) no. 4 , 1005–1009. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2350075 Real hypersurfaces in complex space forms concerned with the local symmetry http://dx.doi.org/10.1007/s10587-007-0083-3 S. Mi Lyu, J. D. Pérez, Y. J. Suh. Real hypersurfaces in complex space forms concerned with the local symmetry Czechoslovak Math. J. 57(132) (2007) no. 3 , 885–905. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2356288 Real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi type http://dx.doi.org/10.4153/CMB-2007-033-9 J. D. Pérez, F. G. Santos, Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is of Codazzi type Canad. Math. Bull. 50 (2007) no. 3 , 347–355. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2344169 Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator http://gigda.ugr.es/digap/?key=MR2333242&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, I. Jeong, Y. J. Suh. Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator In Proceedings of the Eleventh International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2007) , 207–224. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2333242 On real hypersurfaces with $\eta$-parallel curvature tensor in complex space forms http://gigda.ugr.es/digap/?key=MR2333232&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, J. G. Lee, Y. J. Suh. On real hypersurfaces with $\eta$-parallel curvature tensor in complex space forms In Proceedings of the Eleventh International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2007) , 73–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2333232 Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator http://dx.doi.org/10.4134/JKMS.2007.44.2.307 U-Hang Ki, J. D. Pérez, F. G. Santos, Y. J. Suh. Real hypersurfaces in complex space forms with $\xi$-parallel Ricci tensor and structure Jacobi operator J. Korean Math. Soc. 44 (2007) no. 2 , 307–326. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2295391 The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.4134/JKMS.2007.44.1.211 J. D. Pérez, Y. J. Suh. The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians J. Korean Math. Soc. 44 (2007) no. 1 , 211–235. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2283469 Real hypersurfaces in complex projective space whose structure Jacobi operator is $\Bbb D$-parallel http://projecteuclid.org/euclid.bbms/1161350687 J. D. Pérez, F. G. Santos, Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is $\Bbb D$-parallel Bull. Belg. Math. Soc. Simon Stevin 13 (2006) no. 3 , 459–469. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2307681 Real hypersurfaces in complex space forms concerned with the local symmetry http://gigda.ugr.es/digap/?key=MR2215805&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, Y. J. Suh, S. M. Lyu. Real hypersurfaces in complex space forms concerned with the local symmetry In Proceedings of the Tenth International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2006) , 205–221. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2215805 A new characterization of ruled real hypersurfaces in complex projective spaces http://gigda.ugr.es/digap/?key=MR2215792&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. A new characterization of ruled real hypersurfaces in complex projective spaces In Proceedings of the Tenth International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2006) , 23–30. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2215792 New results on the structure Jacobi operator of real hypersurfaces in complex projective spaces http://gigda.ugr.es/digap/?key=MR2215791&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. New results on the structure Jacobi operator of real hypersurfaces in complex projective spaces In Proceedings of the Tenth International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2006) , 13–21. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2215791 On the Lie derivative of structure Jacobi operator of real hypersurfaces in complex projective space http://gigda.ugr.es/digap/?key=MR2137769&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, F. G. Santos. On the Lie derivative of structure Jacobi operator of real hypersurfaces in complex projective space Publ. Math. Debrecen 66 (2005) no. 3-4 , 269–282. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2137769 Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\xi$-parallel http://dx.doi.org/10.1016/j.difgeo.2004.10.005 J. D. Pérez, F. G. Santos, Y. J. Suh. Real hypersurfaces in complex projective space whose structure Jacobi operator is Lie $\xi$-parallel Differential Geom. Appl. 22 (2005) no. 2 , 181–188. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2122741 On Lie parallelness of the structure Jacobi operator of a real hypersurface in complex projective space http://gigda.ugr.es/digap/?key=MR2061869&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. On Lie parallelness of the structure Jacobi operator of a real hypersurface in complex projective space In Proceedings of the Eighth International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2004) , 57–61. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2061869 On parallelness of structure Jacobi operator of a real hyper-surface in complex projective space http://gigda.ugr.es/digap/?key=MR2061868&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. On parallelness of structure Jacobi operator of a real hyper-surface in complex projective space In Proceedings of the Eighth International Workshop on Differential Geometry Kyungpook Nat. Univ., Taegu (2004) , 47–55. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2061868 On real hypersurfaces with $\eta$-parallel curvature tensor in complex space forms http://dx.doi.org/10.1023/B:AMHU.0000003886.15401.76 J. G. Lee, J. D. Pérez, Y. J. Suh. On real hypersurfaces with $\eta$-parallel curvature tensor in complex space forms Acta Math. Hungar. 101 (2003) no. 1-2 , 1–12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2011457 Real hypersurfaces in quaternionic projective spaces with commuting tangent Jacobi operators http://dx.doi.org/10.1017/S0017089502001015 M. Ortega, J. D. Pérez, Y. J. Suh. Real hypersurfaces in quaternionic projective spaces with commuting tangent Jacobi operators Glasg. Math. J. 45 (2003) no. 1 , 79–89. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1972696 On real hypersurfaces in a quaternionic hyperbolic space in terms of the derivative of the second fundamental tensor http://dx.doi.org/10.1023/A:1020819214682 S. M. Lyu, J. D. Pérez, Y. J. Suh. On real hypersurfaces in a quaternionic hyperbolic space in terms of the derivative of the second fundamental tensor Acta Math. Hungar. 97 (2002) no. 1-2 , 145–172. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1932801 Certain conditions on the second fundamental form of real hypersurfaces in quaternionic space forms http://gigda.ugr.es/digap/?key=MR1883633&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. Certain conditions on the second fundamental form of real hypersurfaces in quaternionic space forms In Proceedings of the Sixth International Workshop on Differential Geometry (Taegu, 2001) Kyungpook Natl. Univ., Taegu (2002) , 19–22. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1883633 On Jacobi operators of real hypersurfaces in quaternionic projective space http://gigda.ugr.es/digap/?key=MR1883632&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. On Jacobi operators of real hypersurfaces in quaternionic projective space In Proceedings of the Sixth International Workshop on Differential Geometry (Taegu, 2001) Kyungpook Natl. Univ., Taegu (2002) , 11–17. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1883632 Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective spaces http://dx.doi.org/10.1023/A:1010676103922 J. de D. Pérez, Y. J. Suh. Certain conditions on the Ricci tensor of real hypersurfaces in quaternionic projective spaces Acta Math. Hungar. 91 (2001) no. 4 , 343–356. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1912010 On the second fundamental tensor of real hypersurfaces in quaternionic hyperbolic space http://dx.doi.org/10.1216/rmjm/1020171680 M. Ortega, J. D. Pérez. On the second fundamental tensor of real hypersurfaces in quaternionic hyperbolic space Rocky Mountain J. Math. 31 (2001) no. 3 , 1063–1081. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1877335 Some conditions on the Weingarten endomorphism of real hypersurfaces in quaternionic space forms http://gigda.ugr.es/digap/?key=MR1869764&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, J. D. Pérez. Some conditions on the Weingarten endomorphism of real hypersurfaces in quaternionic space forms Tsukuba J. Math. 25 (2001) no. 2 , 299–309. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1869764 Characterizations of some pseudo-Einstein ruled real hypersurfaces in complex space forms in terms of Ricci tensor http://gigda.ugr.es/digap/?key=MR1869748&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, Y. J. Suh, H. Y. Yang. Characterizations of some pseudo-Einstein ruled real hypersurfaces in complex space forms in terms of Ricci tensor Nihonkai Math. J. 12 (2001) no. 2 , 197–217. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1869748 D-Einstein real hypersurfaces of quaternionic space forms http://dx.doi.org/10.1007/BF02505886 M. Ortega, J. D. Pérez. D-Einstein real hypersurfaces of quaternionic space forms Ann. Mat. Pura Appl. (4) 178 (2000) , 33–44. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1849377 Some questions on the Ricci tensor of real hypersurfaces in a quaternion space form http://gigda.ugr.es/digap/?key=MR1775634&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. Some questions on the Ricci tensor of real hypersurfaces in a quaternion space form In Proceedings of the Fourth International Workshop on Differential Geometry (Taegu, 1999) Kyungpook Natl. Univ., Taegu (2000) , 19–25. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1775634 Real hypersurfaces with constant totally real sectional curvature in a complex space form http://dx.doi.org/10.1023/A:1022881510000 M. Ortega, J. D. Pérez, Y. J. Suh. Real hypersurfaces with constant totally real sectional curvature in a complex space form Czechoslovak Math. J. 50(125) (2000) no. 3 , 531–537. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1777474 Some conditions on real hypersurfaces in quaternionic projective spaces in terms of Lie derivatives http://dx.doi.org/10.1023/A:1006627815212 J. de D. Pérez, S. M. Lyu, Y. J. Suh. Some conditions on real hypersurfaces in quaternionic projective spaces in terms of Lie derivatives Acta Math. Hungar. 85 (1999) no. 3 , 241–251. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1713406 On real hypersurfaces in quaternionic projective space with $\scr D^\bot$-recurrent second fundamental tensor http://dx.doi.org/10.1155/S0161171299221096 Y. J. Suh, J. D. Pérez. On real hypersurfaces in quaternionic projective space with $\scr D^\bot$-recurrent second fundamental tensor Int. J. Math. Math. Sci. 22 (1999) no. 1 , 109–117. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1684325 Totally real sectional curvature of a real hypersurface in a quaternionic space form http://gigda.ugr.es/digap/?key=MR1637700&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, J. D. Pérez. Totally real sectional curvature of a real hypersurface in a quaternionic space form Tsukuba J. Math. 22 (1998) no. 1 , 227–233. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1637700 A characterization of Einstein real hypersurfaces in quaternionic projective space http://gigda.ugr.es/digap/?key=MR1637684&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. H. Lee, J. D. Pérez, Y. J. Suh. A characterization of Einstein real hypersurfaces in quaternionic projective space Tsukuba J. Math. 22 (1998) no. 1 , 165–178. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1637684 Real hypersurfaces of quaternionic projective space satisfying $\nabla_U_i R=0$ http://dx.doi.org/10.1016/S0926-2245(97)00003-X J. D. Pérez, Y. J. Suh. Real hypersurfaces of quaternionic projective space satisfying $\nabla_U_i R=0$ Differential Geom. Appl. 7 (1997) no. 3 , 211–217. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1480534 Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space http://gigda.ugr.es/digap/?key=MR1470995&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, J. D. Pérez. Constant holomorphic sectional curvature and type number of real hypersurfaces of complex hyperbolic space In Proceedings of the 4th International Congress of Geometry (Thessaloniki, 1996) Giachoudis-Giapoulis, Thessaloniki (1997) , 327–335. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1470995 A characterization of almost-Einstein real hypersurfaces of quaternionic projective space http://gigda.ugr.es/digap/?key=MR1467232&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. A characterization of almost-Einstein real hypersurfaces of quaternionic projective space Tsukuba J. Math. 21 (1997) no. 1 , 207–212. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1467232 A characterization of geodesic hyperspheres of quaternionic projective space http://gigda.ugr.es/digap/?key=MR1467224&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. A characterization of geodesic hyperspheres of quaternionic projective space Tsukuba J. Math. 21 (1997) no. 1 , 113–116. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1467224 On Einstein real hypersurfaces in quaternionic projective space http://gigda.ugr.es/digap/?key=MR1464010&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib S. H. Lee, J. D. Pérez, Y. J. Suh. On Einstein real hypersurfaces in quaternionic projective space In Proceedings of the First International Workshop on Differential Geometry (Taegu, 1996) Kyungpook Natl. Univ., Taegu (1997) , 113–127. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1464010 On the Ricci tensor of a real hypersurface of quaternionic hyperbolic space http://dx.doi.org/10.1007/BF02677457 M. Ortega, J. D. Pérez. On the Ricci tensor of a real hypersurface of quaternionic hyperbolic space Manuscripta Math. 93 (1997) no. 1 , 49–57. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1446190 Real hypersurfaces of type A in quaternionic projective space http://dx.doi.org/10.1155/S0161171297000173 U-Hang Ki, Y. J. Suh, J. D. Pérez. Real hypersurfaces of type A in quaternionic projective space Internat. J. Math. Math. Sci. 20 (1997) no. 1 , 115–122. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1431432 On real hypersurfaces in quaternionic projective space with $\scr D^\perp$-parallel second fundamental form http://gigda.ugr.es/digap/?key=MR1420377&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, Y. J. Suh. On real hypersurfaces in quaternionic projective space with $\scr D^\perp$-parallel second fundamental form Nihonkai Math. J. 7 (1996) no. 2 , 185–195. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1420377 Two conditions on the Ricci tensor of a real hypersurface of complex projective space http://gigda.ugr.es/digap/?key=MR1420374&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Ortega, J. D. Pérez, Y. J. Suh. Two conditions on the Ricci tensor of a real hypersurface of complex projective space Nihonkai Math. J. 7 (1996) no. 2 , 147–154. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1420374 On the Ricci tensor of real hypersurfaces of quaternionic projective space http://dx.doi.org/10.1155/S0161171296000270 J. D. Pérez. On the Ricci tensor of real hypersurfaces of quaternionic projective space Internat. J. Math. Math. Sci. 19 (1996) no. 1 , 193–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1361994 Real hypersurfaces of quaternionic projective space satisfying $\nabla_U_iA=0$ http://dx.doi.org/10.1007/BF01228059 J. D. Pérez. Real hypersurfaces of quaternionic projective space satisfying $\nabla_U_iA=0$ J. Geom. 49 (1994) no. 1-2 , 166–177. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1261116 On certain real hypersurfaces of quaternionic projective space. II [ MR1233170 (94e:53043)] http://gigda.ugr.es/digap/?key=MR1380776&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. On certain real hypersurfaces of quaternionic projective space. II [ MR1233170 (94e:53043)] Chapter in The mathematical legacy of Hanno Rund Hadronic Press, Palm Harbor, FL (1993) , 13–24. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1380776 Cyclic-parallel Ricci tensor on real hypersurfaces of a quaternionic projective space http://gigda.ugr.es/digap/?key=MR1324271&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez, F. G. Santos. Cyclic-parallel Ricci tensor on real hypersurfaces of a quaternionic projective space Rev. Roumaine Math. Pures Appl. 38 (1993) no. 1 , 37–40. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1324271 On certain real hypersurfaces of quaternionic projective space. II http://gigda.ugr.es/digap/?key=MR1233170&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. On certain real hypersurfaces of quaternionic projective space. II Algebras Groups Geom. 10 (1993) no. 1 , 13–24. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1233170 Cyclic-parallel real hypersurfaces of quaternionic projective space http://gigda.ugr.es/digap/?key=MR1233122&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. Cyclic-parallel real hypersurfaces of quaternionic projective space Tsukuba J. Math. 17 (1993) no. 1 , 189–191. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1233122 Some conditions on real hypersurfaces of quaternionic projective space http://gigda.ugr.es/digap/?key=MR1282988&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. Some conditions on real hypersurfaces of quaternionic projective space An. \c Stiin\c t. Univ. Al. I. Cuza Ia\c si Sec\c t. I a Mat. 38 (1992) no. 1 , 103–110. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1282988 Recent results on the geometry of real hypersurfaces in quaternionic projective space http://gigda.ugr.es/digap/?key=MR1215512&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Mart\'\inez, J. D. Pérez, F. G. Santos. Recent results on the geometry of real hypersurfaces in quaternionic projective space Chapter in Papers in honor of Pablo Bobillo Guerrero (Spanish) Univ. Granada, Granada (1992) , 183–190. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1215512 A characterization of real hypersurfaces of quaternionic projective space http://gigda.ugr.es/digap/?key=MR1138188&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib J. D. Pérez. A characterization of real hypersurfaces of quaternionic projective space Tsukuba J. Math. 15 (1991) no. 2 , 315–323. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1138188 On real hypersurfaces with harmonic curvature of a quaternionic projective space http://dx.doi.org/10.1007/BF01225882 J. D. Pérez, F. G. Santos. On real hypersurfaces with harmonic curvature of a quaternionic projective space J. Geom. 40 (1991) no. 1-2 , 165–169. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1097760 On certain real hypersurfaces of quaternionic projective space http://dx.doi.org/10.1155/S0161171291000200 J. D. Pérez, F. G. Santos. On certain real hypersurfaces of quaternionic projective space Internat. J. Math. Math. Sci. 14 (1991) no. 1 , 205–207. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1087415 A Bernstein problem in warped products http://dx.doi.org/10.5186/aasfm.2016.4139 J. A. Aledo, R. M. Rubio. A Bernstein problem in warped products Ann. Acad. Sci. Fenn. Math. 41 (2016) no. 2 , 699–704. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3525393 Parabolicity of minimal graphs in Riemannian warped products and rigidity theorems http://dx.doi.org/10.1016/j.na.2016.04.006 J. A. Aledo, R. M. Rubio. Parabolicity of minimal graphs in Riemannian warped products and rigidity theorems Nonlinear Anal. 141 (2016) , 130–138. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3512402 Scalar curvature of spacelike hypersurfaces and certain class of cosmological models for accelerated expanding universes http://dx.doi.org/10.1016/j.geomphys.2016.02.005 J. A. Aledo, R. M. Rubio. Scalar curvature of spacelike hypersurfaces and certain class of cosmological models for accelerated expanding universes J. Geom. Phys. 104 (2016) , 128–136. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3483827 On the scalar curvature of spacelike hypersurfaces in generalized Robertson Walker spacetimes http://dx.doi.org/10.1016/j.difgeo.2015.10.004 J. A. Aledo, R. M. Rubio. On the scalar curvature of spacelike hypersurfaces in generalized Robertson Walker spacetimes Differential Geom. Appl. 44 (2016) , 17–29. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3433973 Constant mean curvature spacelike surfaces in Lorentzian warped products http://dx.doi.org/10.1155/2015/761302 J. A. Aledo, R. M. Rubio. Constant mean curvature spacelike surfaces in Lorentzian warped products Adv. Math. Phys. (2015) , Art. ID 761302, 5. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3417539 Maximal surface equation on a Riemannian 2-manifold with finite total curvature http://dx.doi.org/10.1016/j.geomphys.2015.02.011 R. M. Rubio, J. J. Salamanca. Maximal surface equation on a Riemannian 2-manifold with finite total curvature J. Geom. Phys. 92 (2015) , 140–146. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3328064 Complete constant mean curvature spacelike hypersurfaces in the Einstein--de Sitter spacetime http://dx.doi.org/10.1016/S0034-4877(14)60062-8 R. M. Rubio. Complete constant mean curvature spacelike hypersurfaces in the Einstein--de Sitter spacetime Rep. Math. Phys. 74 (2014) no. 1 , 127–133. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3291470 The Friedmann cosmological models revisited as an harmonic motion and new exact solutions http://dx.doi.org/10.1142/S0219887814500509 R. M. Rubio, J. J. Salamanca. The Friedmann cosmological models revisited as an harmonic motion and new exact solutions Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 5 , 1450050, 13. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3208859 Characterizations of the isometries and construction of the orbits in the hyperbolic plane http://gigda.ugr.es/digap/?key=MR2334026&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, C. Ruiz. Characterizations of the isometries and construction of the orbits in the hyperbolic plane Int. Math. Forum 2 (2007) no. 21-24 , 1129–1140. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2334026 The Saccheri quadrilateral, translations and tessellations in the hyperbolic plane http://gigda.ugr.es/digap/?key=MR2175018&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. The Saccheri quadrilateral, translations and tessellations in the hyperbolic plane Int. J. Pure Appl. Math. 23 (2005) no. 4 , 565–576. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2175018 Orthogonality in the hyperbolic plane http://gigda.ugr.es/digap/?key=MR2222571&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. Orthogonality in the hyperbolic plane Chapter in VIII Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques Prensas Univ. Zaragoza, Zaragoza 31 (2004) , 151–159. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2222571 Study of isometries in the hyperbolic plane using fixed points http://gigda.ugr.es/digap/?key=MR2170145&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. Study of isometries in the hyperbolic plane using fixed points Gac. R. Soc. Mat. Esp. 7 (2004) no. 2 , 387–404. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2170145 Orbits in the hyperbolic plane http://gigda.ugr.es/digap/?key=MR2026029&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. Orbits in the hyperbolic plane Chapter in Seventh Zaragoza-Pau Conference on Applied Mathematics and Statistics (Spanish) (Jaca, 2001) Univ. Zaragoza, Zaragoza 27 (2003) , 297–305. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2026029 The Lambert quadrilateral and tessellations in the hyperbolic plane http://gigda.ugr.es/digap/?key=MR1918037&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. The Lambert quadrilateral and tessellations in the hyperbolic plane Int. Math. J. 2 (2002) no. 8 , 777–795. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1918037 Electronic hyperbolic ruler-and-compass for tessellations http://gigda.ugr.es/digap/?key=MR1899753&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. Electronic hyperbolic ruler-and-compass for tessellations In Proceedings of the Meeting of Andalusian Mathematicians, Vol. II (Spanish) (Sevilla, 2000) Univ. Sevilla Secr. Publ., Seville 52 (2001) , 467–474. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1899753 Hyperbolic plane tesselations http://gigda.ugr.es/digap/?key=MR1875247&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib D. Gámez, M. Pasadas, R. Pérez, C. Ruiz. Hyperbolic plane tesselations Chapter in Actes des VI$^\rm \grave emes$. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1875247 On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism http://gigda.ugr.es/digap/?key=Sanchez2017mogollon&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. N. Bernal, B. Janssen, A. Jiménez, A. Jiménez-Cano, J. A. Orejuela, P. Sánchez-Moreno, M. Sánchez. On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism Physics Letters B 768 (2017) , 280–287. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ASanchez2017mogollon Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes http://gigda.ugr.es/digap/?key=CaponioJavaloyesSanchez2016&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib E. Caponio, M. A. Javaloyes, M. Sánchez. Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes prepub (2016) , 80 pp.. [arXiv] %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ACaponioJavaloyesSanchez2016 Compact affine manifolds with precompact holonomy are geodesically complete http://gigda.ugr.es/digap/?key=AkeMiguel2016&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib L. Aké, M. Sánchez. Compact affine manifolds with precompact holonomy are geodesically complete J. Math. Anal. Appl. 436 (2016) , 1369–1371. [arXiv] %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AAkeMiguel2016 Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness http://dx.doi.org/10.1007/s12220-015-9572-z E. Caponio, A. V. Germinario, M. Sánchez. Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness J. Geom. Anal. 26 (2016) no. 2 , 791–836. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3472817 Un paseo por las geometrías del espaciotiempo en el centenario de la Relatividad General http://gigda.ugr.es/digap/?key=BernalSanchez2015&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. N. Bernal, M. Sánchez. Un paseo por las geometrías del espaciotiempo en el centenario de la Relatividad General La Gaceta de la RSME (2015) no. 3 , 521–542. %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3ABernalSanchez2015 Myers and Hawking theorems: geometry for the limits of the universe http://dx.doi.org/10.1007/s00032-015-0241-2 P. Morales Álvarez, M. Sánchez. Myers and Hawking theorems: geometry for the limits of the universe Milan J. Math. 83 (2015) no. 2 , 295–311. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3412284 A note on the causal homotopy classes of a globally hyperbolic spacetime http://dx.doi.org/10.1088/0264-9381/32/19/197001 P. Morales Álvarez, M. Sánchez. A note on the causal homotopy classes of a globally hyperbolic spacetime Classical Quantum Gravity 32 (2015) no. 19 , 197001, 12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3402449 Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] http://dx.doi.org/10.1142/S0219887815020028 M. De León, G. Marmo, M. Muñoz-Lecanda, M. Sánchez. Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1502002, 1. (Held at the University of Granada, Granada, September 2--5, 2014) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3400647 On the completeness of trajectories for some mechanical systems http://gigda.ugr.es/digap/?key=MR3380061&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. On the completeness of trajectories for some mechanical systems Chapter in Geometry, mechanics, and dynamics Springer, New York 73 (2015) , 343–372. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3380061 An invitation to Lorentzian geometry http://dx.doi.org/10.1365/s13291-013-0076-0 O. Mueller, M. Sánchez. An invitation to Lorentzian geometry Jahresber. Dtsch. Math.-Ver. 115 (2014) no. 3-4 , 153–183. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3158102 Structure of second-order symmetric Lorentzian manifolds http://dx.doi.org/10.4171/JEMS/368 O. F. Blanco, M. Sánchez, J. M. M. Senovilla. Structure of second-order symmetric Lorentzian manifolds J. Eur. Math. Soc. (JEMS) 15 (2013) no. 2 , 595–634. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR3017046 Recent progress on the notion of global hyperbolicity http://gigda.ugr.es/digap/?key=MR2867856&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. Recent progress on the notion of global hyperbolicity Chapter in Advances in Lorentzian geometry Amer. Math. Soc., Providence, RI 49 (2011) , 105–124. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2867856 Lorentzian manifolds isometrically embeddable in $\Bbb L^N$ http://dx.doi.org/10.1090/S0002-9947-2011-05299-2 O. Mueller, M. Sánchez. Lorentzian manifolds isometrically embeddable in $\Bbb L^N$ Trans. Amer. Math. Soc. 363 (2011) no. 10 , 5367–5379. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2813419 Convex domains of Finsler and Riemannian manifolds http://dx.doi.org/10.1007/s00526-010-0343-1 R. Bartolo, E. Caponio, A. V. Germinario, M. Sánchez. Convex domains of Finsler and Riemannian manifolds Calc. Var. Partial Differential Equations 40 (2011) no. 3-4 , 335–356. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2764910 Causal boundaries and holography on wave type spacetimes http://dx.doi.org/10.1016/j.na.2009.02.101 M. Sánchez. Causal boundaries and holography on wave type spacetimes Nonlinear Anal. 71 (2009) no. 12 , e1744–e1764. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2671953 Geodesics in semi-Riemannian manifolds: geometric properties and variational tools http://dx.doi.org/10.4171/051-1/10 A. M. Candela, M. Sánchez. Geodesics in semi-Riemannian manifolds: geometric properties and variational tools Chapter in Recent developments in pseudo-Riemannian geometry Eur. Math. Soc., Zürich (2008) , 359–418. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2436236 The causal hierarchy of spacetimes http://dx.doi.org/10.4171/051-1/9 E. Minguzzi, M. Sánchez. The causal hierarchy of spacetimes Chapter in Recent developments in pseudo-Riemannian geometry Eur. Math. Soc., Zürich (2008) , 299–358. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2436235 Globally hyperbolic spacetimes can be defined as `causal' instead of `strongly causal' http://dx.doi.org/10.1088/0264-9381/24/3/N01 A. N. Bernal, M. Sánchez. Globally hyperbolic spacetimes can be defined as `causal' instead of `strongly causal' Classical Quantum Gravity 24 (2007) no. 3 , 745–749. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2294243 Cauchy hypersurfaces and global Lorentzian geometry http://gigda.ugr.es/digap/?key=MR2368508&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. Cauchy hypersurfaces and global Lorentzian geometry Chapter in XIV Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 10 (2006) , 143–163. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2368508 Erratum: ``Connecting solutions of the Lorentz force equation do exist'' [Comm. Math. Phys. \bf 264 (2006), no. 2, 349--370; \refcno 2215609] http://dx.doi.org/10.1007/s00220-006-0064-7 E. Minguzzi, M. Sánchez. Erratum: ``Connecting solutions of the Lorentz force equation do exist'' [Comm. Math. Phys. \bf 264 (2006), no. 2, 349--370; \refcno 2215609] Comm. Math. Phys. 267 (2006) no. 2 , 559–561. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2249781 Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions http://dx.doi.org/10.1007/s11005-006-0091-5 A. N. Bernal, M. Sánchez. Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions Lett. Math. Phys. 77 (2006) no. 2 , 183–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2254187 Connecting solutions of the Lorentz force equation do exist http://dx.doi.org/10.1007/s00220-006-1547-2 E. Minguzzi, M. Sánchez. Connecting solutions of the Lorentz force equation do exist Comm. Math. Phys. 264 (2006) no. 2 , 349–370. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2215609 On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes http://dx.doi.org/10.1016/j.difgeo.2005.06.008 M. Sánchez. On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes Differential Geom. Appl. 24 (2006) no. 1 , 21–32. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2193746 Causal hierarchy of spacetimes, temporal functions and smoothness of Geroch's splitting. A revision http://gigda.ugr.es/digap/?key=MR2196783&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. Causal hierarchy of spacetimes, temporal functions and smoothness of Geroch's splitting. A revision Mat. Contemp. 29 (2005) , 127–155. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2196783 Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples http://dx.doi.org/10.1088/0264-9381/22/21/009 A. Garc\'\ia-Parrado, M. Sánchez. Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples Classical Quantum Gravity 22 (2005) no. 21 , 4589–4619. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2177456 Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes http://dx.doi.org/10.1007/s00220-005-1346-1 A. N. Bernal, M. Sánchez. Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes Comm. Math. Phys. 257 (2005) no. 1 , 43–50. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2163568 Orthogonal trajectories on stationary spacetimes under intrinsic assumptions http://gigda.ugr.es/digap/?key=MR2114909&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. Germinario, M. Sánchez. Orthogonal trajectories on stationary spacetimes under intrinsic assumptions Topol. Methods Nonlinear Anal. 24 (2004) no. 2 , 239–268. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2114909 Trajectories connecting two submanifolds on a non-complete Lorentzian manifold http://gigda.ugr.es/digap/?key=MR2036194&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. Germinario, M. Sánchez. Trajectories connecting two submanifolds on a non-complete Lorentzian manifold Electron. J. Differential Equations (2004) , No. 10, 20. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2036194 On smooth Cauchy hypersurfaces and Geroch's splitting theorem http://dx.doi.org/10.1007/s00220-003-0982-6 A. N. Bernal, M. Sánchez. On smooth Cauchy hypersurfaces and Geroch's splitting theorem Comm. Math. Phys. 243 (2003) no. 3 , 461–470. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2029362 Leibnizian, Galilean and Newtonian structures of space-time http://dx.doi.org/10.1063/1.1541120 A. N. Bernal, M. Sánchez. Leibnizian, Galilean and Newtonian structures of space-time J. Math. Phys. 44 (2003) no. 3 , 1129–1149. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1958259 Periodic trajectories in Gödel type space-times http://dx.doi.org/10.1016/S0362-546X(01)00846-X A. M. Candela, A. Salvatore, M. Sánchez. Periodic trajectories in Gödel type space-times Nonlinear Anal. 51 (2002) no. 4, Ser. A: Theory Methods , 607–631. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1920340 A note on the boundary of a static Lorentzian manifold http://dx.doi.org/10.1016/S0926-2245(02)00062-1 R. Bartolo, A. Germinario, M. Sánchez. A note on the boundary of a static Lorentzian manifold Differential Geom. Appl. 16 (2002) no. 2 , 121–131. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1893903 Convexity of domains of Riemannian manifolds http://dx.doi.org/10.1023/A:1014231603588 R. Bartolo, A. Germinario, M. Sánchez. Convexity of domains of Riemannian manifolds Ann. Global Anal. Geom. 21 (2002) no. 1 , 63–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1889250 Fundamental units of length and time http://dx.doi.org/10.1023/A:1013800914617 A. N. Bernal, M. P. López, M. Sánchez. Fundamental units of length and time Found. Phys. 32 (2002) no. 1 , 77–108. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1885734 Existence of a closed geodesic on non-compact Riemannian manifolds with boundary http://gigda.ugr.es/digap/?key=MR1881999&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Bartolo, A. Germinario, M. Sánchez. Existence of a closed geodesic on non-compact Riemannian manifolds with boundary Adv. Nonlinear Stud. 2 (2002) no. 1 , 51–69. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1881999 Geodesic connectedness of semi-Riemannian manifolds http://dx.doi.org/10.1016/S0362-546X(01)00427-8 M. Sánchez. Geodesic connectedness of semi-Riemannian manifolds In Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000) 47 (2001) no. 5 , 3085–3102. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1979206 Existence of geodesics in Gödel type space-times http://dx.doi.org/10.1016/S0362-546X(01)00292-9 A. M. Candela, M. Sánchez. Existence of geodesics in Gödel type space-times In Proceedings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000) 47 (2001) no. 3 , 1581–1592. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1977042 Remarks on some variational problems on non-complete manifolds http://dx.doi.org/10.1016/S0362-546X(01)00410-2 R. Bartolo, M. Sánchez. Remarks on some variational problems on non-complete manifolds In Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000) 47 (2001) no. 4 , 2887–2892. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1972414 Some semi-Riemannian volume comparison theorems http://dx.doi.org/10.2748/tmj/1178207817 P. E. Ehrlich, M. Sánchez. Some semi-Riemannian volume comparison theorems Tohoku Math. J. (2) 52 (2000) no. 3 , 331–348. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1772801 Geodesic connectedness in Gödel type space-times http://dx.doi.org/10.1016/S0926-2245(99)00039-X A. M. Candela, M. Sánchez. Geodesic connectedness in Gödel type space-times Differential Geom. Appl. 12 (2000) no. 2 , 105–120. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1758844 On the variety of two-dimensional Lorentzian scalar products http://gigda.ugr.es/digap/?key=MR1780779&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib R. Ram\'\irez, M. Sánchez. On the variety of two-dimensional Lorentzian scalar products Rev. Acad. Canaria Cienc. 11 (1999) no. 1-2 , 23–27. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1780779 Closed and $T$-periodic geodesics in Lorentzian manifolds http://gigda.ugr.es/digap/?key=MR1746295&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. Closed and $T$-periodic geodesics in Lorentzian manifolds Chapter in Relativity and gravitation in general (Salamanca, 1998) World Sci. Publ., River Edge, NJ (1999) , 309–313. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1746295 Periodic trajectories with fixed energy on Riemannian and Lorentzian manifolds with boundary http://dx.doi.org/10.1007/BF02505911 R. Bartolo, A. Germinario, M. Sánchez. Periodic trajectories with fixed energy on Riemannian and Lorentzian manifolds with boundary Ann. Mat. Pura Appl. (4) 177 (1999) , 241–262. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1747633 On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields http://dx.doi.org/10.1016/S0393-0440(98)00061-8 M. Sánchez. On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields J. Geom. Phys. 31 (1999) no. 1 , 1–15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1704817 Geodesics in static spacetimes and $t$-periodic trajectories http://dx.doi.org/10.1016/S0362-546X(97)00683-4 M. Sánchez. Geodesics in static spacetimes and $t$-periodic trajectories Nonlinear Anal. 35 (1999) no. 6, Ser. A: Theory Methods , 677–686. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1663623 Timelike periodic trajectories in spatially compact Lorentz manifolds http://dx.doi.org/10.1090/S0002-9939-99-04979-5 M. Sánchez. Timelike periodic trajectories in spatially compact Lorentz manifolds Proc. Amer. Math. Soc. 127 (1999) no. 10 , 3057–3066. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1616609 Bochner's technique on Lorentzian manifolds and infinitesimal conformal symmetries http://dx.doi.org/10.2140/pjm.1998.186.141 A. Romero, M. Sánchez. Bochner's technique on Lorentzian manifolds and infinitesimal conformal symmetries Pacific J. Math. 186 (1998) no. 1 , 141–148. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1665060 On the geometry of generalized Robertson-Walker spacetimes: geodesics http://dx.doi.org/10.1023/A:1026664209847 M. Sánchez. On the geometry of generalized Robertson-Walker spacetimes: geodesics Gen. Relativity Gravitation 30 (1998) no. 6 , 915–932. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1617862 Some remarks on causality theory and variational methods in Lorenzian manifolds http://gigda.ugr.es/digap/?key=MR1609616&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. Some remarks on causality theory and variational methods in Lorenzian manifolds Conf. Semin. Mat. Univ. Bari (1997) no. 265 , ii+12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1609616 Spacelike hypersurfaces of constant mean curvature in certain spacetimes http://dx.doi.org/10.1016/S0362-546X(97)00246-0 L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in certain spacetimes In Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996) 30 (1997) no. 1 , 655–661. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1489832 Lorentzian manifolds admitting a Killing vector field http://dx.doi.org/10.1016/S0362-546X(97)00041-2 M. Sánchez. Lorentzian manifolds admitting a Killing vector field In Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996) 30 (1997) no. 1 , 643–654. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1489831 Geodesic connectedness in generalized Reissner-Nordström type Lorentz manifolds http://dx.doi.org/10.1023/A:1018824709846 M. Sánchez. Geodesic connectedness in generalized Reissner-Nordström type Lorentz manifolds Gen. Relativity Gravitation 29 (1997) no. 8 , 1023–1037. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1466072 Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems http://dx.doi.org/10.2748/tmj/1178225107 L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems Tohoku Math. J. (2) 49 (1997) no. 3 , 337–345. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1464181 Structure of Lorentzian tori with a Killing vector field http://dx.doi.org/10.1090/S0002-9947-97-01745-5 M. Sánchez. Structure of Lorentzian tori with a Killing vector field Trans. Amer. Math. Soc. 349 (1997) no. 3 , 1063–1080. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1376554 An integral inequality on compact Lorentz manifolds, and its applications http://dx.doi.org/10.1112/blms/28.5.509 A. Romero, M. Sánchez. An integral inequality on compact Lorentz manifolds, and its applications Bull. London Math. Soc. 28 (1996) no. 5 , 509–513. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1396153 An introduction to the completeness of compact semi-Riemannian manifolds http://gigda.ugr.es/digap/?key=MR1715955&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib M. Sánchez. An introduction to the completeness of compact semi-Riemannian manifolds Chapter in Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994--1995 Univ. Grenoble I, Saint-Martin-d'Hères 13 (1995) , 37–53. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1715955 Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes http://gigda.ugr.es/digap/?key=MR1434487&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib L. J. Alías, A. Romero, M. Sánchez. Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes Chapter in Geometry and topology of submanifolds, VII (Leuven, 1994/Brussels, 1994) World Sci. Publ., River Edge, NJ (1995) , 67–70. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1434487 Geodesic completeness and conformal Lorentzian moduli space on the torus http://gigda.ugr.es/digap/?key=MR1357432&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, M. Sánchez. Geodesic completeness and conformal Lorentzian moduli space on the torus Chapter in Differential geometry and its applications (Granada, 1994) CIEMAT, Madrid 2 (1995) , 189–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1357432 Spacelike hypersurfaces of constant mean curvature in spatially closed Lorentzian manifolds http://gigda.ugr.es/digap/?key=MR1357431&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in spatially closed Lorentzian manifolds Chapter in Differential geometry and its applications (Granada, 1994) CIEMAT, Madrid 2 (1995) , 177–187. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1357431 Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/BF02105675 L. J. Alías, A. Romero, M. Sánchez. Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes Gen. Relativity Gravitation 27 (1995) no. 1 , 71–84. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1310212 Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field http://dx.doi.org/10.2307/2160582 A. Romero, M. Sánchez. Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field Proc. Amer. Math. Soc. 123 (1995) no. 9 , 2831–2833. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1257122 On completeness of compact Lorentzian manifolds http://gigda.ugr.es/digap/?key=MR1315099&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib A. Romero, M. Sánchez. On completeness of compact Lorentzian manifolds Chapter in Geometry and topology of submanifolds, VI (Leuven, 1993/Brussels, 1993) World Sci. Publ., River Edge, NJ (1994) , 171–182. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1315099 On completeness of certain families of semi-Riemannian manifolds http://dx.doi.org/10.1007/BF01264047 A. Romero, M. Sánchez. On completeness of certain families of semi-Riemannian manifolds Geom. Dedicata 53 (1994) no. 1 , 103–117. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1299888 New properties and examples of incomplete Lorentzian tori http://dx.doi.org/10.1063/1.530584 A. Romero, M. Sánchez. New properties and examples of incomplete Lorentzian tori J. Math. Phys. 35 (1994) no. 4 , 1992–1997. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1267937 On the completeness of geodesics obtained as a limit http://dx.doi.org/10.1063/1.530057 A. Romero, M. Sánchez. On the completeness of geodesics obtained as a limit J. Math. Phys. 34 (1993) no. 8 , 3768–3774. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1230550 The prescribed curvature problem in dimension four http://dx.doi.org/10.1016/j.matpur.2009.10.003 J. Muñoz Masqué, L. M. Pozo Coronado, I. Sánchez Rodríguez. The prescribed curvature problem in dimension four J. Math. Pures Appl. (9) 92 (2009) no. 6 , 599–612. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2565844 $G$-structures defined on pseudo-Riemannian manifolds http://dx.doi.org/10.1142/9789814261173_0035 I. Sánchez-Rodríguez. $G$-structures defined on pseudo-Riemannian manifolds Chapter in Differential geometry World Sci. Publ., Hackensack, NJ (2009) , 321–326. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR2523521 Intersection of $G$-structures of first or second order http://gigda.ugr.es/digap/?key=MR1978770&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib I. Sánchez-Rodríguez. Intersection of $G$-structures of first or second order Chapter in Differential geometry and its applications (Opava, 2001) Silesian Univ. Opava, Opava 3 (2001) , 135–140. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1978770 Second-order connections and normal Cartan connection for a conformal structure http://gigda.ugr.es/digap/?key=MR1939535&bib=%252Fhome%252Fwww%252Fbibdata%252Fdigap.bib I. Sánchez Rodríguez. Second-order connections and normal Cartan connection for a conformal structure In Proceedings of the VIII Fall Workshop on Geometry and Physics (Spanish) (Medina del Campo, 1999) R. Soc. Mat. Esp., Madrid 2 (2001) , 277–286. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fdigap.bib%3A%3AMR1939535