2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001 | 2000

Publicaciones de K. Panagiotidou [rss]
2016
G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A classification of three-dimensional real hypersurfaces in non-flat complex space forms in terms of their generalized Tanaka-Webster Lie derivative Canad. Math. Bull. 59 (2016) no. 4 , 813–823. (Paging previously given as: 1--11) MathScinet [bib] [doi]
G. Kaimakamis, K. Panagiotidou, J. D. Pérez. The structure Jacobi operator of three-dimensional real hypersurfaces in non-flat complex space forms Kodai Math. J. 39 (2016) no. 1 , 154–174. MathScinet [bib] [doi]
G. Kaimakamis, K. Panagiotidou, J. D. Pérez. Real hypersurfaces in non-flat complex space form with structure Jacobi operator of Lie-Codazzi type Bull. Malays. Math. Sci. Soc. 39 (2016) no. 1 , 17–27. MathScinet [bib] [doi]
2015
K. Panagiotidou, J. D. Pérez. On the Lie derivative of real hypersurfaces in $\Bbb CP^2$ and $\Bbb CH^2$ with respect to the generalized Tanaka-Webster connection Bull. Korean Math. Soc. 52 (2015) no. 5 , 1621–1630. MathScinet [bib] [doi]
K. Panagiotidou, J. D. Pérez. The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians Internat. J. Math. 26 (2015) no. 9 , 1550075, 14. MathScinet [bib] [doi]
G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A new condition on the structure Jacobi operator of real hypersurfaces in non-flat complex space forms Mediterr. J. Math. 12 (2015) no. 2 , 525–540. MathScinet [bib] [doi]
K. Panagiotidou, J. D. Pérez. Commuting conditions of the $k$-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms Open Math. 13 (2015) , 321–332. MathScinet [bib] [doi]
2013
J. D. Pérez, G. Kaimakamis, K. Panagiotidou, Y. J. Suh. Lie derivatives on real hypersurfaces of non-flat complex space forms In Proceedings of the 17th International Workshop on Differential Geometry and the 7th KNUGRG-OCAMI Differential Geometry Workshop [Vol. 17] Natl. Inst. Math. Sci. (NIMS), Taej\u on (2013) , 21–30. MathScinet [bib]
Powered by bibtexbrowser