On the space of geodesics of Riemannian and Lorentzian space forms

Henri Anciaux

September $6 \sim 9, 2011$

The space of geodesics of a given type (timelike or spacelike) $L^{\pm}(\mathbb{S}_p^{n+1})$ of a non-flat pseudo-Riemannian space form \mathbb{S}_p^{n+1} of signature (p, n+1-p) enjoys a natural invariant structure: in the case of periodic geodesics, it is (pseudo)-Kähler, while in the case of unbounded geodesics, it enjoys a para-Kähler structure. We shall prove that the corresponding pseudo-Riemannian metric is Einstein.

We also study the normal congruence of a hypersurface S of \mathbb{S}_p^{n+1} , which happens to be a Lagrangian submanifold \bar{S} of $L^{\pm}(\mathbb{S}_p^{n+1})$, and relate the geometries of S and \bar{S} . In particular \bar{S} is totally geodesic if and only if S has parallel second fundamental form. Moreover we may express the minimality of \bar{S} by a functional relation between the principal curvatures of S.

The case of geodesics in three-dimensional space forms is special: the four-dimensional spaces $L^{\pm}(\mathbb{S}_p^3)$ enjoy an additional pseudo- or para-Kähler structure, whose corresponding metric is not anymore Einstein, but is scalar-flat. Again the metric properties of a normal congruence \bar{S} are related to that of the underlying surface; in particular \bar{S} is flat if and only if S is Weingarten.