On the Geometric Structure of Ori Spacetimes

Mike Scherfner

joint work with J. Dietz and A. Dirmeier

TU Berlin, Department of Mathematics

06/09/2011

CTCs

In Lorentzian manifolds, closed timelike curves — CTCs — are the worldlines of material particles that are closed. So from the mathematicians point of view they are simple entities.

Spacetimes without CTCs are denoted as chronological; a lot of well known spacetimes have this property, like Minkowski, Friedmann and Robertson-Walker spacetimes (globally hyperbolic).

It is an easy task to construct non-chronological spacetimes:

It is an easy task to construct non-chronological spacetimes: Consider the cylinder

$$\mathbb{S}^1\times \mathbb{R}.$$

It is an easy task to construct non-chronological spacetimes:

Consider the cylinder

$$\mathbb{S}^1 \times \mathbb{R}$$
.

Endowed with the metric

$$g = -d\phi^2 + dx^2$$

we see that the curves with constant x-coordinate are CTCs.

It is an easy task to construct non-chronological spacetimes:

Consider the cylinder

$$\mathbb{S}^1 \times \mathbb{R}$$
.

Endowed with the metric

$$g = -d\phi^2 + dx^2$$

we see that the curves with constant x-coordinate are CTCs.

The main problem (from the physicists point of view) is that most of the models are not very physical (energy conditions, matter ...).

Short list

Of interest in the last decades were the following models allowing CTCs (the list is not complete):

- Lanczos-cylinder (1924)
- Van Stockum-dust (1936)
- Gödel spacetime (1949)
- Kerr-vacuum (1963)
- Tipler-cylinder (1974)
- Generalized Gödel-type models (2010)

Short list

Of interest in the last decades were the following models allowing CTCs (the list is not complete):

- Lanczos-cylinder (1924)
- Van Stockum-dust (1936)
- Gödel spacetime (1949)
- Kerr-vacuum (1963)
- Tipler-cylinder (1974)
- Generalized Gödel-type models (2010)
- Ori spacetimes (1993,...,2011)

Perturbation of the Minkowski spacetime (cylindrical coordinates):

$$ds^{2} = dt^{2} - dr^{2} - r^{2}d\phi^{2} - dz^{2} - d\sigma^{2}$$

Perturbation of the Minkowski spacetime (cylindrical coordinates):

$$ds^{2} = dt^{2} - dr^{2} - r^{2}d\phi^{2} - dz^{2} - d\sigma^{2}$$

Perturbation of the Minkowski spacetime (cylindrical coordinates):

$$ds^{2} = dt^{2} - dr^{2} - r^{2}d\phi^{2} - dz^{2} - d\sigma^{2}$$

with

$$d\sigma^2 = 2rh(\rho) (at \cdot dt - b((r - r_0)dr + zdz)) d\phi + r^2h^2(\rho) (b^2\rho^2 - a^2t^2) d\phi^2.$$

Here

$$h(
ho) = egin{cases} \left(1-\left(rac{
ho}{d}
ight)^4
ight)^3, &
ho < d \ 0, & otherwise, \end{cases}$$

where $a,b,r_0>0,\ 0< d< r_0$ are parameters and $\rho^2=(r-r_0)^2+z^2$. The factor $h(\rho)$ restricts the perturbation to the interior of the described torus.

Inside the torus

The light cones tip over with increasing t.

Inside the torus

Inside the torus

In 2005 Ori presented another spacetime developing CTCs inside a vacuum core part surrounded by a matter field.

In 2005 Ori presented another spacetime developing CTCs inside a vacuum core part surrounded by a matter field.

The line element reads

$$ds^{2} = 2dzdt - dx^{2} - dy^{2} - (e\rho^{2} - t)dz^{2} - 2((2e - a)xdx + (2e - a)ydy) dz$$

with $\rho^2=x^2+y^2$, e,a>0. Here the z-coordinate is periodic; $z\in[0,L],\ L>0;\ z=0$ and z=L are identified.

Some remarks:

• The spacetime has the (to some extent unusual) topology of $\mathbb{R}^3 \times \mathbb{S}^1.$

- The spacetime has the (to some extent unusual) topology of $\mathbb{R}^3 \times \mathbb{S}^1$.
- The hypersurfaces t=const are spacelike at t<0

- The spacetime has the (to some extent unusual) topology of $\mathbb{R}^3 \times \mathbb{S}^1$.
- The hypersurfaces t = const are spacelike at t < 0
- The hypersurfaces t = const are mixed at $t \ge 0$:
 - causal for small ρ
 - ullet spacelike for large ho

- The spacetime has the (to some extent unusual) topology of $\mathbb{R}^3 \times \mathbb{S}^1$.
- The hypersurfaces t = const are spacelike at t < 0
- The hypersurfaces t = const are mixed at $t \ge 0$:
 - causal for small ρ
 - ullet spacelike for large ho
- Since $g_{zz}=e
 ho^2$, the curves ∂_z are timelike at $t>e
 ho^2$

So the light cones behave in the following way:

So the light cones behave in the following way:

Causality border of the hypersurfaces t = const

So the light cones behave in the following way:

Causality border of the hypersurfaces t = const

Causality border for the directions ∂_z

Pseudo Schwarzschild spacetime (as warped product):

Pseudo Schwarzschild spacetime (as warped product):

• Base:
$$Z=\mathbb{S}^1 imes\mathbb{R}^+$$
 with $g_1=\left(1-rac{2m}{r}
ight)d
u^2+2d
u dr$

Pseudo Schwarzschild spacetime (as warped product):

- Base: $Z = \mathbb{S}^1 \times \mathbb{R}^+$ with $g_1 = \left(1 \frac{2m}{r}\right) d\nu^2 + 2d\nu dr$
- Fiber: H^2 with $g_2 = d\theta^2 + \sinh^2(\theta)d\phi^2$ (metric of the hyperbolic plane with radius 1)
 - $\bullet \ \ (0,\infty)\times \mathbb{S}^1 \to \mathbb{R}^2, \quad (\theta,\phi) \mapsto (\sinh\theta\cos\phi, \sinh\theta\sin\phi)$

Geodesics:

Geodesics:

• We have

$$\left(1 - \frac{2m}{r}\right)\dot{\nu}^2 + 2\dot{\nu}\dot{r} + r^2\dot{\theta}^2 + r^2\sinh^2(\theta)\dot{\phi}^2 = k$$

with k=-1,0,1 for a timelike, lightlike or spacelike geodesic

Geodesics:

• We have

$$\left(1-\frac{2m}{r}\right)\dot{\nu}^2+2\dot{\nu}\dot{r}+r^2\dot{\theta}^2+r^2\sinh^2(\theta)\dot{\phi}^2=k$$

with k = -1, 0, 1 for a timelike, lightlike or spacelike geodesic

• Killing fields: $K_1=\partial_{
u}, \quad K_2=-\cos(\phi)\partial_{ heta}+\sin(\phi)\coth(heta)\partial_{\phi}$

Geodesics:

We have

$$\left(1 - \frac{2m}{r}\right)\dot{
u}^2 + 2\dot{
u}\dot{r} + r^2\dot{ heta}^2 + r^2\sinh^2(heta)\dot{\phi}^2 = k$$

with k = -1, 0, 1 for a timelike, lightlike or spacelike geodesic

- Killing fields: $K_1=\partial_{
 u}, \quad K_2=-\cos(\phi)\partial_{ heta}+\sin(\phi)\coth(heta)\partial_{\phi}$
- Killing fields lead to the first integrals

$$\left(1-\frac{2m}{r}\right)\dot{\nu}+\dot{r}=\mathcal{C},\quad r^2\dot{\theta}=\mathcal{H}$$

Geodesics:

We have

$$\left(1 - \frac{2m}{r}\right)\dot{
u}^2 + 2\dot{
u}\dot{r} + r^2\dot{ heta}^2 + r^2\sinh^2(heta)\dot{\phi}^2 = k$$

with k = -1, 0, 1 for a timelike, lightlike or spacelike geodesic

- Killing fields: $K_1=\partial_{
 u}, \quad K_2=-\cos(\phi)\partial_{ heta}+\sin(\phi)\coth(heta)\partial_{\phi}$
- Killing fields lead to the first integrals

$$\left(1-\frac{2m}{r}\right)\dot{\nu}+\dot{r}=\mathcal{C},\quad r^2\dot{\theta}=\mathcal{H}$$

• Result: $C^2 = \dot{r}^2 + V(r)$ with

$$V(r) = \left(1 - \frac{2m}{r}\right)\left(k - \frac{\mathcal{H}^2}{r^2}\right).$$

Causal geodesics:

Spacelike geodesics:

Consider the manifold $M = \mathbb{S}^1 \times \mathbb{R}^3$ with the metric

$$g=g_{
u
u}d
u^2-2d
u dr+2g_{
u\phi}d
u d\phi-2a\sinh^2(heta)drd\phi+
ho^2d heta^2+g_{\phi\phi}d\phi^2$$

Consider the manifold $M = \mathbb{S}^1 \times \mathbb{R}^3$ with the metric

$$g=g_{
u
u}d
u^2-2d
u dr+2g_{
u\phi}d
u d\phi-2a\sinh^2(heta)drd\phi+
ho^2d heta^2+g_{\phi\phi}d\phi^2$$

with

$$\begin{split} g_{\nu\nu} &= 1 - \frac{2mr}{\rho^2}, \\ g_{\nu\phi} &= -\frac{2mar}{\rho^2} \sinh^2(\theta), \\ g_{\phi\phi} &= \left(r^2 + a^2 - \frac{2ma^2r}{\rho^2} \sinh^2(\theta)\right) \sinh^2(\theta), \end{split}$$

where $\rho^2 = r^2 + a^2 \cosh^2(\theta)$.

The so called Kerr function

$$\Delta(r) = r^2 - 2mr + a^2$$

has two zeros $0 < r_0 < r_1 < 2m$ given by

$$r_i = m + (-1)^i \sqrt{m^2 - a^2}.$$

The so called Kerr function

$$\Delta(r) = r^2 - 2mr + a^2$$

has two zeros $0 < r_0 < r_1 < 2m$ given by

$$r_i = m + (-1)^i \sqrt{m^2 - a^2}.$$

This separates M into the regions $R_{\rm II}$, $R_{\rm III}$, $R_{\rm III}$ for which $r_1 < r$, $r_0 < r < r_1$ and $r < r_0$, respectively.

The so called Kerr function

$$\Delta(r) = r^2 - 2mr + a^2$$

has two zeros $0 < r_0 < r_1 < 2m$ given by

$$r_i = m + (-1)^i \sqrt{m^2 - a^2}.$$

This separates M into the regions $R_{\rm II}$, $R_{\rm III}$, $R_{\rm III}$ for which $r_1 < r$, $r_0 < r < r_1$ and $r < r_0$, respectively.

Furthermore, we have two horizons H_i characterized by $r = r_i$ with their union H.

Fix some $r_s > r_1$ that determines the spacelike hypersurface

$$\mathscr{S} = \{ p \in M \colon r(p) = r_s \}$$

and consider the subset

$$\mathscr{C} = \{ p \in M \colon r(p) = r_s, \ \theta(p) \leq \theta_0 \} \subset \mathscr{S} \subset \mathrm{R_I}.$$

Fix some $r_s > r_1$ that determines the spacelike hypersurface

$$\mathscr{S} = \{ p \in M : r(p) = r_s \}$$

and consider the subset

$$\mathscr{C} = \{ p \in M : r(p) = r_s, \ \theta(p) \leq \theta_0 \} \subset \mathscr{S} \subset \mathrm{R}_{\mathrm{I}}.$$

The constant $\theta_0 > 0$ will be subject to constraints, such that the future domain of dependence $D^+(\mathscr{C})$ contains points on the horizon H_1 in its closure.

