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CTCs

In Lorentzian manifolds, closed timelike curves { CTCs { are the
worldlines of material particles that are closed. So from the
mathematicians point of view they are simple entities.



Chronology

Spacetimes without CTCs are denoted as chronological; a lot of
well known spacetimes have this property, like Minkowski,
Friedmann and Robertson-Walker spacetimes (globally hyperbolic).



Chronology

It is an easy task to construct non-chronological spacetimes:

Consider the cylinder

S
1 � R:

Endowed with the metric

g = �d�2 + dx2

we see that the curves with constant x-coordinate are CTCs.

The main problem (from the physicists point of view) is that most
of the models are not very physical (energy conditions, matter ...).
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Short list

Of interest in the last decades were the following models allowing
CTCs (the list is not complete):

� Lanczos-cylinder (1924)

� Van Stockum-dust (1936)

� G�odel spacetime (1949)

� Kerr-vacuum (1963)

� Tipler-cylinder (1974)

� Generalized G�odel-type models (2010)
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ds2 = dt2 � dr2 � r2d�2 � dz2 � d�2
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Here

h(�) =

8<
:
�
1�

�
�
d

�4�3
; � < d

0; otherwise;

where a; b; r0 > 0, 0 < d < r0 are parameters and
�2 = (r � r0)

2 + z2. The factor h(�) restricts the perturbation to
the interior of the described torus.
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Inside the torus

The light cones tip over with increasing t.
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Ori (2005)

In 2005 Ori presented another spacetime developing CTCs inside a
vacuum core part surrounded by a matter �eld.

The line element reads

ds2 = 2dzdt � dx2 � dy2 � (e�2 � t)dz2 �

2 ((2e � a)xdx + (2e � a)ydy) dz

with �2 = x2 + y2, e; a > 0. Here the z-coordinate is periodic;
z 2 [0; L], L > 0; z = 0 and z = L are identi�ed.
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Some remarks:

� The spacetime has the (to some extent unusual) topology of
R
3 � S

1.

� The hypersurfaces t = const are spacelike at t < 0

� The hypersurfaces t = const are mixed at t � 0:
� causal for small �
� spacelike for large �

� Since gzz = e�2, the curves @z are timelike at t > e�2
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So the light cones behave in the following way:

Causality border of the hypersurfaces t = const

Causality border for the directions @z
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Ori (2007)

Pseudo Schwarzschild spacetime (as warped product):

� Base: Z = S
1 � R

+ with g1 =
�
1� 2m

r

�
d�2 + 2d�dr

� Fiber: H2 with g2 = d�2 + sinh2(�)d�2 (metric of the
hyperbolic plane with radius 1)

� (0;1)� S1 ! R
2; (�; �) 7! (sinh � cos�; sinh � sin�)
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Ori (2007)
Geodesics:

� We have�
1�

2m

r

�
_�2 + 2 _� _r + r2 _�2 + r2 sinh2(�) _�2 = k

with k = �1; 0; 1 for a timelike, lightlike or spacelike geodesic

� Killing �elds: K1 = @� ; K2 = � cos(�)@� + sin(�) coth(�)@�
� Killing �elds lead to the �rst integrals�

1�
2m

r

�
_� + _r = C; r2 _� = H

� Result: C2 = _r2 + V (r) with

V (r) =

�
1�

2m

r

��
k �

H2

r2

�
:
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Causal geodesics:
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Spacelike geodesics:



Generalized spacetime (2011, J. Dietz, A. Dirmeier, M. S.)

Consider the manifold M = S
1 � R

3 with the metric

g = g��d�
2 � 2d�dr + 2g��d�d�� 2a sinh2(�)drd�+ �2d�2 + g��d�

2



Generalized spacetime (2011, J. Dietz, A. Dirmeier, M. S.)

Consider the manifold M = S
1 � R

3 with the metric

g = g��d�
2 � 2d�dr + 2g��d�d�� 2a sinh2(�)drd�+ �2d�2 + g��d�

2

with

g�� = 1�
2mr

�2
;

g�� = �
2mar

�2
sinh2(�);

g�� =

�
r2 + a2 �

2ma2r

�2
sinh2(�)

�
sinh2(�);

where �2 = r2 + a2 cosh2(�).



Generalized spacetime (2011, J. Dietz, A. Dirmeier, M. S.)

The so called Kerr function

�(r) = r2 � 2mr + a2

has two zeros 0 < r0 < r1 < 2m given by

ri = m + (�1)i
p
m2 � a2:

This separates M into the regions RI, RII, RIII for which r1 < r ,
r0 < r < r1 and r < r0, respectively.

Furthermore, we have two horizons Hi characterized by r = ri with
their union H.
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Fix some rs > r1 that determines the spacelike hypersurface

S = fp 2 M : r(p) = rsg

and consider the subset

C = fp 2 M : r(p) = rs ; �(p) � �0g � S � RI:

The constant �0 > 0 will be subject to constraints, such that the
future domain of dependence D+(C ) contains points on the
horizon H1 in its closure.
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