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Abstract
In [5] Michelsohn elaborates a detailed analysis of the Clifford cohomo-
logy on Kähler manifolds. For this she considers the bundle ClC(M) =
Cl(M) ⊕ C and a triple of parallel operators L, L and H defined on it and
which carry an intrinsic sl(2)-structure of ClC(M). This, together with J ,
yields a decomposition

ClC(M) ≡ ⊕|p+q|≤nCl
p,q(M).

Taking the hermitian Dirac operators D and D associated to the Levi-
Civita connection she obtains that D2 = D

2
= 0 and D + D = 1/2D, where

D is the corresponding Dirac operator, and D is the formal adjoint of D.
In [1] the authors define a formally holomorphic connection over those
hermitian manifolds which satisfy the third curvature condition. The ex-
presion for this connection is

(1) ∇X = ∇L.C.
X − 1

2
J(∇L.C.

X J)

where ∇L.C. represents the Levi-Civita connection and X ∈ TCM .
In this contribution we use the algebraic theory of the Clifford algebra
ClC(M) developed by Michelsohn and this formally holomorphic connec-
tion to obtain similar operators to D and D, D∇ and D

∇, defined on cer-
tain hermitian non Kähler manifolds and which satisfy similar properties,
(D∇)2 = (D

∇
)2 = 0 and such that D∇ is the formal adjoint of D∇.

1. Preliminaries

An almost hermitian manifold (M2n, J, 〈·, ·〉) is a real manifold of dimension 2n endowed with an almost
complex structure J and with a metric 〈·, ·〉 compatible with J , that is 〈JX, JY 〉 = 〈X, Y 〉; ∀X, Y ∈ TM .
A hermitian manifold is an almost hermitian manifold (M2n, J, 〈·, ·〉) such that

(∇L.C.X J)Y = (∇L.C.JX J)JY

for any vector fields X, Y ∈ TM and where∇L.C. denotes the Levi-Civita connection associated to the
metric 〈·, ·〉.
It is a well known fact, see for example [1], that on any hermitian manifold the torsion, T∇, of the con-
nection given by the expression (1) satisfies T∇(X, Y )−T∇(JX, JY ) = 0 ; ∀X, Y ∈ TM . Furthermore,
if the hermitian manifold M satisfies the third curvature condition, then the connection ∇ is formally
holomorphic.
Lets {e1, Je1, . . . , en, Jen} be an associated J-basis, the complexified of the vector space TM , TCM ,
is generated by the elements εk = 1/2(ek − iJek) and εk = 1/2(ek + iJek) for k = 1, . . . , n. The
extension of the almost complex structure to VC in the natural way induces the decomposition
TCM = T (1,0)M ⊗ T (0,1)M , where the vectors εk and εk are basis for T (1,0)M and T (0,1)M respec-
tively.
The Clifford algebra Cl(M) associated to the tangent fiber bundle is defined as the quotient T/I, where
T =

∑∞
r=0⊗rTM is the tensor algebra and I is the two-side ideal generated by all elements of the

form v ⊗ v + ‖v‖ · 1, v ∈ V . So, the Clifford algebra ClM) is the unitary associative algebra equipped
with a canonical embedding TM ⊂ Cl(M), and it is characterized by the universal property that any
linear map φ : M → A into an associative algebra, A, with unit, such that φ(v) · φ(v) = −‖v‖ · 1 for all v,
extends to a unique algebra homomorphism φ̂ : Cl(M) → A. It´s not difficult to prove that the Clifford
algebra ClC(M) is generated by the elements of the form εIεJ = εi1 · . . . · εir · εj1 · . . . · εjs, where I and J
are increasing elements of the set {i, . . . , n} not necessarily disjoints, and which satisfy the relations
εkεj + εjεk = −δij and εkεk = εkεk = 0.
The almost complex structure can also be extended to ClC(M) by setting J(w1 · . . . · wk) = 1

i

∑k
i=1w1 ·

. . . · J(wi) · . . . · wk which satisfy J(εIεJ) = (|I| − |J |)εIεJ and define the decomposition

ClC(M) =

n⊕
p=−n

Clp

where Clp = {ϕ ∈ ClC(M) : Jϕ = pϕ}.
There exist three intrinsically linear maps L, L, H : ClC(M) −→ ClC(M) defined as follows:

L(ϕ) = −
n∑
i=1

εiϕεi, L(ϕ) = −
n∑
i=1

εiϕεi, H(ϕ) = [L,L](ϕ)

for ϕ ∈ ClC(M).
It is not difficult to prove that the operators L, L, H verify the following relations: [L,L] = H, [H,L] = 2L,
[H,L] = −2L and hence they define a representation of sl(2) on ClC(M).
Each of the operators L, L, H commutes with J, therefore it is posible to define the subspaces

Clp,q = {ϕ ∈ ClC(M) : hϕ = qϕ and Jϕ = pϕ}
and obtain the decomposition

ClC(M) = ⊗p,qClp,q

2. Complex Dirac operators

It is a well known result that any unitary connection on TCM extends canonically to the bundle ClC(M)
as a derivation, i. e., such that

∇(ϕ · ψ) = ∇ϕ · ψ + ϕ · ∇ψ
for all ϕ, ψ ∈ Γ(ClC(M)). Each of the operators J, H, L and L is parallel in this connection. In particular,
the subspaces Clp,q(M) are preserved under covariant differentiation.

We introduce now two differential operators DS∇, DS∇
: Γ(ClC(M))→ Γ(ClC(M)) by the formulas

DS∇ =

n∑
j=1

εj · ∇εj +
1

2

n∑
i=1

εS(ei)ei

D
S∇

=

n∑
j=1

εj · ∇εj +
1

2

n∑
i=1

εS(ei)ei

where εS(ei)ei = 1/2(S(ei)ei − iJS(ei)ei).

2.1. Clifford cohomology

Theorem. If the divergence associated to the connection ∇ coincide with the divergence as-
sociated to the Levi-Civita connection then the operators DS∇ and D

S∇ are formally adjoint.

Demostration:
At each p ∈ M it is possible to choose local frames ε1, . . . , εn, ε1, . . . , εn such that (∇εk)p = (∇εk)p = 0
for every k ∈ {1, . . . , n}. For ϕ, ψ ∈ Γ(ClC(M)) we define the complex vector U given by
〈V, U〉 = 1/4((V − iJV ) · ϕ, ψ) for any tangent vectors V , where (·, ·) is the hermitian inner product
defined in ClC(M) associated to the scalar product 〈·, ·〉 in the usual way and where “·” denotes the
Clifford product. Then at the point p we have

div∇U = div∇
L.C.

+

n∑
i=1

(ϕ, S(εi)εi) =

n∑
i=1

εi(εi · ϕ, ψ).

We consider know the auxiliar operator

D∇ =

n∑
i=1

εi · ∇εi

which at the point p satisfy

(D∇ϕ, ψ) = div∇U +

n∑
i=1

(ϕ, εi · ∇εiψ)

hence
(DS∇ϕ, ψ) = (ϕ,D

S∇
ψ) + div∇

L.C.
U

and finally ∫
M

(DS∇ϕ, ψ) =

∫
M

(ϕ,D
S∇
ψ) +

∫
M
div∇

L.C.
U =

∫
M

(ϕ,D
S∇
ψ)

�

Theorem. The operators D∇ =

n∑
i=1

εi · ∇εi and D
∇

=

n∑
i=1

εi · ∇εi satisfy the following equalities

(D∇)2 = 0 = (D
∇

)2

Demostration:
As above we consider at each point p ∈ M local frames ε1, . . . , εn, ε1, . . . , εn such that (∇εk)p =
(∇εk)p = 0 for every k ∈ {1, . . . , n}. For ϕ, ψ ∈ Γ(ClC(M)) we have

(D∇)2 =

n∑
j<k

εj · εk ·R∇(εj, εk) +

n∑
j<k

εj · εk · ∇T∇(εj,εk)
= 0

(D
∇

)2 =

n∑
j<k

εj · εk ·R∇(εj, εk) +

n∑
j<k

εj · εk · ∇T∇(εj,εk)
= 0

�

Furthermore, the complexes

. . .
D∇−→ Γ(Clp−1,q−1)

D∇−→ Γ(Clp,q)
D∇−→ Γ(Clp+1,q+1)

D∇−→ . . .

. . .
D
∇

←− Γ(Clp−1,q−1)
D
∇

←− Γ(Clp,q)
D
∇

←− Γ(Clp+1,q+1)
D
∇

←− . . .

are elliptic. To see this let φ = (λjej +µjJej)
[ ∈ T ∗M be a real 1-form in M, then the principal symbols

of D∇ and D
∇ are given by σ(D∇, φ) = ξ· and σ(D

∇
, φ) = ξ· respectively, where ξ = 1/4(φ − iJφ).

Hence, for the operator D∇ there are defined finite dimensional Clifford cohomology groups

Hp,q(M) = (KerD∇/ImD∇) ∩ Γ(Clp,q)

which are isomorphic to the groups

Hp,q(M) = Ker(∆) ∩ Γ(Clp,q)

where ∆ is the Laplacian ∆ = D∇D
∇

+ D∇D
∇. The argument for the operator D∇ is the same.

3. Examples

In [2] the author proves that on the homogeneous natural reductive space M = U(3)/(U(1) ×
U(1) × U(1)) there exist three different hermitian structures, J1, J2 and J3, defined in the follow-
ing way: Let g and h be the Lie algebras of U(3) and U(1) × U(1) × U(1) respectively, then we
have the reductive decomposition g = h + m, here m is identified with the tangent space of M at
a point o. Let denote by Dij the (3 × 3)-matrix consisting of a single 1 in the i-th row and j-th
column, and zeros in the rest, Eij = 1/

√
2(Dij − Dji) and Fi,j = i/

√
2(Dij + Dji). The matrices

e1 = E12, e2 = F12, e3 = E13, e4 = F13, e5 = E23, e6 = F23 generate a basis of m. So, the almost
complex structures J1, J2 and J3 are given by:

J1(e1) = e2, J1(e3) = e4, J1(e5) = e6
J2(e1) = e2, J2(e3) = e4, J2(e5) = −e6
J3(e1) = −e2, J3(e3) = e4, J3(e5) = e6

It is prove too that this manifold endowed with any of these hermitian structures satisfy de third cur-
vature condition. Furthermore, it is not difficult to see that in any of this cases the operators DS∇ and
D
S∇ coincide with the operators D∇ and D

∇ respectively.
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