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Our Problem
Classify conformally flat homogeneous semi-Riemannian mani-
folds

a semi-Riemannian manifold (Mg, g) is conformally flat
&SV peM, 3 (V,eg,-+- ,xp) of p,a C® ft p>0s. t.

g:p2(—da:%—---—da:?l—kdazg_l_l—l—---—kdw%)

a semi-Riemannian manifold (Mg, g) is homogeneous
<V op,p’ € M, 3 an isometry ¢ of M s.t. ¢(p) =p'.



Known results

o the Riemanninan case: H. Takagi 1975

(1)M™(K),

(2)M™(k) x M"™(—=k), Kk#0,2<m < n—2,

BYM"™ (k) xR, k #0,

M™ (k) the simply connected complete Riemannian manifold of

constant curvature k

o 3-dim Lorentzian manifolds : Honda and Tsukada 2007
the examples which are not symmetric spaces



Characetrizations of conformally flatnhess
M]] . an n(> 4)-dim semi-Riem mfd with a metric g of index q.

The following conditions are equivalent:
(1) M is conformally flat

(2) the curvature tensor R of M satisfies the following:

n i 2 (Q B 2(nS— 1)Id) ’

where Q :the Ricci operator, § : the scalar curvature

R(X,Y)=AXAY +XAAY, A=

n-+2

(3) 3 an isometric immersion of M into A C ]R{q+1,

5 _ . . 2
where A = {x € jor"l — {0}|(x,x) = 0} : the light cone in Rgil



The key of our approach :

to determine the forms of the operator A

We assume that M is a homogeneous semi-Riemannian mani-
fold. Then the —possibly complex— eigenvalues of A and their
algebraic multiplicities are constant on M

We have the useful identity of the eigenvalues of A.



Theorem 1 M(';" . a conformally flat homogeneous semi-Riemannian

manifold

A,+++ o Ap . the distinct eigenvalues of the operator A on M
mi,-++ .M. their algebraic multiplicities.

If for some ¢ € {1,--. ,7}, the eigenvalue X; is real and

the dimension of its eigenspace coincides with its algebraic multiplicity,
then we have




The case that A is diagonalizable with real eigenvalues

In this case A has at most two distinct eigenvalues.

Theorem 2 Mg . an n-dimensional conformally flat homoge-
neous semi-Riemannian manifold

If the operator A is diagonalizable with real eigenvalues, then
M(’] is locally isometric to one of the following:
(1) M7 (k),
(M7} (k) x M)~ ' (—k),k #0,2<m <n—2,
_ —1
(Mg~ (k) x R or M '(k) x Ry , k # 0,

where M;}(k) is of constant curvature k and index q’



T he case of Lorentzian manifolds

From now on we assume that M is an n(> 4) dimensional con-
formally flat homogeneous Lorentzian manifold whose operator
A is not diagonalizable with real eigenvalues.

Theorem 3 Under the assumption above, A has exactly
one of the following three forms:

(o \

a

a? 4 b? = A2
N b+#£0
dim T)\ = dim T_)\

Case 1.




e=1or —1

Case 2. A A<0




Case 3

\

= %

S » O

> = O

A

—A

N

A<O
dimT_)\ S dimT)\ — 2

With respect to a semi-orthonormal basis (e1,e2) =1, (e;,€;) =

5z°j (7/7.7 > 3)



Construction and characeterization 1

Example 1 An indefinite inner product ( , ) on R™ (n = 2m —2)
defined by

m
<Xa y> = —x1Y1 + Z T;Y; X, ¥ € R™
1=2

M(m,2 : R): the linear space of real m X 2 matrices.
For X,Y € M(m,2:R), we define an inner product (X,Y) by

(Xa Y) — <x1,y1> + <x2,y2>
X = (X17X2)7 Y = (yla y2) Xiy¥Yi € R™,



K =S04(1,m —1) x SO(2) : the product Lie group
The action of K on M(m,2 : R) by

(k1 ko) X X — ki Xky '

Then K acts as the group of orthogonal transformations with
respect to (, ).

(c > 0) : a lightlike vector with respect to (, ).

M. : the K-orbit through X,.



Then M, is a hypersurface in the lightcone A .

Moreover M, is a 2m — 2(= n)-dimensional conformally flat
Lorentzian manifold whose linear operator A has the form

0 —1

1
a_ Lt l1o

22 I—2



Theorem 4 M of Case 1. Then M is locally isometric to M,

(c = ;IAI) constructed in Example 1.




Construction and characeterization 2

Example 2 ¢ :a real linear space with the basis E; (3 < @ <
n), F;; 3<i<j<n), X; (1<1i<n).

We define a bracket operation [, | on € as follows:
Ei,E;] =0 Fijs Fy| = —0;1.Fj1 + 61 F;+
\Ei, Fj| = 0;;E — 6;1E; 0uFjr — 01 Fyy
[E;, X1] =0 FzgaXl} =0
[Eiy Xo] = —X; — cE; Fzgv X2} =0
Ei X;| = 6;; X1 Fijy Xp) = —0i1. X + 01X
[ X1, Xo] = —cX)y
X1, X;1 =0
| A1y A g [X’L? X]} =0
)(2,)(‘7 = —€Ej
1,7, k, 1 > 3 c €R e=1o0or —1

Then [ , ] satisfies the Jacobi identity and & becomes a Lie



algebra. Let h be a linear subspace of & spanned by {Ez-,Fij}.
Then h is a Lie subalgebra of &.



K : a simply connected Lie group corresponding to €
H : the connected Lie subgroup of K which corresponds to b

M =K/H

w: K — K/H = M :the projection, =w(H) = o.

w:t — ToM: the differential of w at e € K

p:the subspace spanned by {X; 1 <:<mn)}, p~ToM
an inner product ( ) on p defined by

(X1,X2) =1, (X;,X;)=290;; (3<L14,5<mn), otherwise 0.

We can define the K-invariant Lorentzian metric g on M .



(M, g) is conformally flat and its linear operators A has the form
case 2 with A = 0.

Theorem 5 M of case 2 with A = 0. Then M is locally isometric
to the model constructed in Example 2.

Remark c¢ : the parameter in € .

(M, g) is a Lorentzian symmetric space << c =0




Case 2 A <0

We can construct examples similarly to Example 2 and charac-
terize them.

Case 3

We can construct examples similarly to Example 2. However we
cannot solve the classification problem for this case at the present.




T he theory of infinitesimally homogeneous spaces by Singer

Our method is due to the theory above.

M : a semi-Riemannian manifold.

R, VR, V2R, -+« :the essential local invariants of M

If M is conformally flat,

A, VA, VZA, .-+ :the essential local invariants of M

Singer’s theory : the relation between the homogeneity and the
curvature tensor and its covariant derivatives



For a non-negative integer [,

P(l) : Vp,q € M 3 a linear isometry ¢ : TpM — TyM s. t.

¢*(VIR)y = (V'R)p, i=0,1,..,L

so(TpM) :the Lie algebra of the endomorphisms of T, M which
are skew-symmetric with respect to (,)

For a non-negative integer [,

ai(p) = {X € s0(TpM) | X-(V'R)p =0, i=0,1,....1}
3 a first integer s(p) s.t.

so(TpM) 2 go(p) 2 91(P) 2 92(P) 2 -+ 2 95(p)(P) = Bs(p)+1(P)-



Definition M is infinitesimally homogeneous if M satisfies P(s(p)+
1) for some point pe M .

If M is infinitesimally homogeneous, we put sps = s(p) and call
it the Singer invariant of M.

Theorem S.1 A connected infinitesimally homogeneous semi-
Riemannian manifold is locally homogeneous.



Theorem S.2 M ,M’ : locally homogeneous semi-Riemannian
manifolds , p € M p’ € M’. Suppose that there exists a linear
isometry ¢ : T,M — T,yM' such that

¢*(V'R)y = (V'R)p i=0,1,...,sp + 1,

Then there exists a local isometry ¢ of a neighborhood of p onto
a neighborhood of p’ which satisfies p(p) = p’ and pu«p = ¢.



Corollary M and M’ : conformally flat locally homogeneous
semi-Riemannian manifolds , p € M p’ € M’. Suppose that
there exists a linear isometry ¢ : Tp,M — szM’ such that

¢*(VEA) ) = (VPA)p i=0,1,., 500 + 1.

Then there exists a local isometry ¢ of a neighborhood of p onto
a neighborhood of p’ which satisfies p(p) = p’ and pu«p = ¢.



Singer’s invariants of conformally flat homogeneous

Lorentzian manifolds

the Singer invariant
Case 1l dim =14 0
Case 1 dim > 6 1
Case 2 A <0 1
Case2 A =0 0
Case 3 ?




