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space-time (i.e., a 4-dimensional metric of Lorenz signature) in a
certain part of the universe.

We live here 

Photo of Pulsar by NASA and ESA

We would like 
to know what 
happends here

huge distance 

We assume that this part is far enough so the we can use only
telescopes (in particular we can not send a space ship there).

We still assume that the telescopes can see sufficiently many
objects in this part of universe.

Then, if the relativistic effects are not negligible (that happens for
example is the objects in this part of space time are sufficiently fast
or if this region of the universe is big enough),
we obtain as a rule the world lines of the objects as
UNPARAMETERISED curves.
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One can obtain  unparameterized geodesics by observation:

We take 2 freely falling observers  that  
measure two angular coordinates of   the  visible objects   

Information

 and send this information to one place. This place will have  
4 functions  angle(t) for every visible object 
 which are in the  generic case 4 coordinates  of the object.       

This place has 
4=2+2 coordinates of 
any visiable object 

Telsecope N1

Telsecope N2

Information
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This approach is related to the so called “radar coordinates”. It is a hot
topic since 1950th (THE LASER ASTROMETRIC TEST OF
RELATIVITY — Space Interferometry Mission), but is applicable in a
small neighborhood of solar system only.
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The mathematical setting: We are given a family of smooth curves
γ(t;α) in U ⊆ R

4; we assume that the family is sufficiently big in the
sense that ∀x0 ∈ U

Ωx0
:= {ξ ∈ Tx0

U | ∃α and ∃t0 with d
dt

γ(t;α)|t=t0 is proportional to ξ}
contains an open subset of Tx0

U.
We need to find a metric g such that all γ(t;α) are reparameterized

geodesics.

In dimension 2, this problem was attacked already by S. Lie 1882 and R.
Liouville 1889, and by Veblen, Thomas and Eisenhart in the beginning of
the 20th century. In the realm of general relativity, the problem was
explicitly stated by

Jürgen Ehlers 1972, who said that “We reject clocks as ba-
sic tools for setting up the space-time geometry and propose
... freely falling particles instead. We wish to show how the
full space-time geometry can be synthesized ... . Not only the
measurement of length but also that of time then appears as a
derived operation.”
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Subproblem 1.1. Given a family of curves γ(t; a), how to
understand whether these curves are reparameterised geodesics of
a certain affine connection? How to reconstruct this connection
effectively?

Def. We will say that a metric lies in a projective class of a
certain symmetric affine connection Γ = Γi

jk , if every geodesic of g
is a reparameterized geodesic of Γ.

Subproblem 1.2. Given an affine connection Γ = Γi
jk , how to

understand whether there exists a metric g in the projective class
of Γ? How to reconstruct this metric effectively?
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f(X)
X

Lagrange example 1789 Radial projection
f : S2 → R

2 takes geodesics of the sphere
to geodesics of the plane, because geodesics
on sphere/plane are intersection of plains
containing 0 with the sphere/plane.
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Def. Two metrics (on one manifold) are geodesically equivalent if they
have the same unparameterized geodesics (notation: g ∼ ḡ)
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Lagrange example 1789 Radial projection
f : S2 → R

2 takes geodesics of the sphere
to geodesics of the plane, because geodesics
on sphere/plane are intersection of plains
containing 0 with the sphere/plane.

The example of Lagrange survives for all signatures and for all
dimensions.
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Examples of Dini 1869 and Levi-Civita 1896

Fact (Dini 1869): The metric
(X (x) − Y (y))(dx2 + dy2)
is geodesically equivalent to
(

1
Y (y) −

1
X (x)

)(
dx2

X (x) + dy2

Y (y)

)

.

Fact (Levi-Civita 1896) The metrics of Dini can be generalized
for every dimension: The metric
−(T (t)−X1(x1))(T (t)−X2(x2))(T (t)−X3(x3))dt2 +(T (t)−X1(x1))(X1(x1)−X2(x2))(X1(x1)−

X3(x3))dx2
1 + (T (t) − X2(x2))(X1(x1) − X2(x2))(X2(x2) − X3(x3))dx2

2 + (T (t) − X3(x3))(X1(x1) −

X3(x3))(X2(x2) − X3(x3))dx3
3

is geodesically equivalent to the metric

−
(T (t)−X1(x1))(T (t)−X2(x2))(T (t)−X3(x3))

T (t)2X1(x1)X2(x2)X3(x3)
dt2 +

(T (t)−X1(x1))(X1(x1)−X2(x2))(X1(x1)−X3(x3))

T (t)X1(x1)2X2(x2)X3(x3)
dx2

1 +

(T (t)−X2(x2))(X1(x1)−X2(x2))(X2(x2)−X3(x3))

T (t)X1(x1)X2(x2)2X3(x3)
dx2

2 +
(T (t)−X3(x3))(X1(x1)−X3(x3))(X2(x2)−X3(x3))

T (t)X1(x1)X2(x2)X3(x3)2
dx3

3
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Example – Theorem (Kiosak–Matveev 2009; answers a question
explicitely asked by H. Weyl; partial cases are due to Petrov 1961
and Hall-Lonie 2007): Let (M4, g) be a pseudo-Riemannian Einstein
(i.e., Ricc = Scal

4 g) manifold of nonconstant curvature. Then, every ḡ
having the same geodesics with g has the same Levi-Civita connection
with g.
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Subproblem 2.1. What metrics ‘interesting’ for general
relativity are geodesically rigid?

Example – Theorem (Kiosak–Matveev 2009; answers a question
explicitely asked by H. Weyl; partial cases are due to Petrov 1961
and Hall-Lonie 2007): Let (M4, g) be a pseudo-Riemannian Einstein
(i.e., Ricc = Scal

4 g) manifold of nonconstant curvature. Then, every ḡ
having the same geodesics with g has the same Levi-Civita connection
with g.

Thus, all ‘interesting’ Einstein metrics are geodesically rigid.

Example. The so-called Friedman-Lemaitre-Robertson-Walker metric

g = −dt2 + R(t)2
dx2 + dy2 + dz2

1 + κ
4 (x2 + y2 + z2)

; κ = +1; 0;−1,

is not geodesically rigid. Indeed, ∀c the metric

ḡ =
−1

(R(t)2 + c)2
dt2 +

R(t)2

c(R(t)2 + c)

dx2 + dy2 + dz2

1 + κ
4 (x2 + y2 + z2)

is geodesically equivalent to g (essentially Levi-Civita 1896; repeated by
many relativists (Nurowski, Gibbons et al, Hall) later).
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Subproblem 2.2. Construct all pairs of nonproportional
geodesically equivalent metrics (4-dimensional and of
Lorenz signature).

History and outline

◮ In the Riemannian case, such description is due to Levi-Civita 1896.

◮ Pseudo-Riemannian case was considered to be solved by Aminova
1993, but recently mathematical difficulties were found in her work.

◮ We give an answer (joint with Bolsinov) in dimension 4 and for
Lorenz signature of the metric.

◮ Actually, we can generalize the answer for all dimensions n and for
all signatures.



The goal of my talk: to say something about all this
(sub)problems

◮ Problem 1. How to reconstruct a metric by its
unparameterized geodesics?

◮ Subproblem 1.1. Given a big family of curves γ(t; a), how to
understand whether these curves are reparameterised geodesics
of a certain affine connection? How to reconstruct this
connection effectively?

◮ Subproblem 1.2. Given an affine connection Γ = Γi
jk , how to

understand whether there exists a metric g in the projective
class of Γ? How to reconstruct this metric effectively?

◮ Problem 2. In what situations is the reconstruction of a metric by
the unparameterised geodesics unique (up to the multiplication of
the metric by a constant)?

◮ Subproblem 2.1. What metrics ‘interesting’ for general
relativity are geodesically rigid?

◮ Subproblem 2.2. Construct all pairs of nonproportional
geodesically equivalent metrics.
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It is well known (at least since Levi-Civita) that every geodesic
γ : I → U, γ : t 7→ γ i (t) ∈ U ⊂ R

n of Γ is given in terms of arbitrary
parameter t as solution of
d2γa

dt2 + Γa
bc

dγb

dt
dγc
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= f
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)
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Better known version of this formula assumes that the parameter is
affine (we denote it by “s”) and reads
d2γa

ds2 + Γa
bc

dγb
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dγc

ds
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Take x0 ∈ U. For every γ(t;α) with γ(t0;α) = x0 we view the equations
(∗) as a system of equations on the entries of Γ(x0) and on the function
f|Ωx0

; the coefficients in this system come from known data
(

dγ(t;α)
dt

)

|t=t0
,
(

d2γ(t;α)
dt2

)

|t=t0
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connection? How to construct this connection?

It is well known (at least since Levi-Civita) that every geodesic
γ : I → U, γ : t 7→ γ i (t) ∈ U ⊂ R

n of Γ is given in terms of arbitrary
parameter t as solution of
d2γa

dt2 + Γa
bc

dγb

dt
dγc

dt
= f

(
dγ
dt

)
dγa

dt
. (∗)

Better known version of this formula assumes that the parameter is
affine (we denote it by “s”) and reads
d2γa

ds2 + Γa
bc

dγb

ds
dγc

ds
= 0. (∗∗)

Take x0 ∈ U. For every γ(t;α) with γ(t0;α) = x0 we view the equations
(∗) as a system of equations on the entries of Γ(x0) and on the function
f|Ωx0

; the coefficients in this system come from known data
(

dγ(t;α)
dt

)

|t=t0
,
(

d2γ(t;α)
dt2

)

|t=t0
. Since we have infinitely many curves γ
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.
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This is the only gauge freedom

Repeat: d2γa

dt2 + Γa
bc

dγb

dt
dγc

dt
= f

(
dγ
dt

)
dγa

dt
. (∗)

Suppose we have two solutions (Γ, f ) and (Γ̄, f̄ ).
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Γ̃a
bcv
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The first equation of (4) is equivalent to the equation (∗) for a = 1

solved with respect to f
(

dγ
dt

)

. We obtain the second, third, etc,

equations of (4) by substituting the first equation of (4) in the equations
(∗) with a = 2, 3, etc.
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Subproblem 1.2: Given an affine connection Γ = Γi
jk , how

to understand whether there exists a metric g in the
projective class of Γ?



Subproblem 1.2: Given an affine connection Γ = Γi
jk , how

to understand whether there exists a metric g in the
projective class of Γ?

Theorem (Eastwood-Matveev 2006) g lies in a projective class of a
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addition coming from volume form
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Theorem (Eastwood-Matveev 2006) g lies in a projective class of a
connection Γi

jk if and only if σab := g ab · det(g)1/(n+1) is a solution of

(
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)
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(
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2/(n+1)M. In particular,

∇aσ
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bd

︸ ︷︷ ︸

Usual covariant derivative

−
2

n + 1
Γd

da σbc
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addition coming from volume form

The equations (5) is a system of
(

n2(n+1)
2 − n

)

linear PDEs of the first

order on n(n+1)
2 unknown components of σ.

The system (5) is an overdetermined linear system of PDE of finite type

the first order on the unknown functions σbc ; in theory, there exists an

algorithmic method to understand the existence of a solution. The

method is highly computational and hardly applicable in this case.
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Weyl has shown that the projective Weyl tensor does not depend of the

choice of connection within the projective class: if the connections Γ and
Γ̄ are related by the formula

Γa
bc = Γ̄a

bc − δa
bφc − δa

cφb, (1)

then their projective Weyl tensors coincide. Now, from the formula (6),
we know that, if the searched ḡ is Ricci-flat, projective Weyl tensor
coincides with the Riemann tensor R̄ i

jkℓ of ḡ . Thus, if we know the
projective class of the Ricci-flat metric ḡ , we know its Riemann tensor.



Then, the metric ḡ must satisfy the following system of equations due to
the symmetries of the Riemann tensor:

{
ḡiaW
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jkm + ḡjaW

a
ikm = 0

ḡiaW
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jkm − ḡkaW

a
mij = 0

(7)

The first portion of the equations is due to the symmetry
(R̄ijkm = −R̄jikm), and the second portion is due to the symmetry
(R̄kmij = R̄ijkm) of the curvature tensor of ḡ .
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jkm − ḡkaW

a
mij = 0

(7)

The first portion of the equations is due to the symmetry
(R̄ijkm = −R̄jikm), and the second portion is due to the symmetry
(R̄kmij = R̄ijkm) of the curvature tensor of ḡ .
We see that for every point x0 ∈ U the system (7) is a system of linear
equations on ḡ(x0)ij . The number of equations (around 100) is much
bigger than the number of unknowns (which is 10). It is expected
therefore, that a generic projective Weyl tensor W i

jkl admits no more
than one-dimensional space of solutions (by assumtions, our W admits at
least one-dimensional space of solutions). The expectation is true, as the
following classical result shows

Theorem (Folklore – Petrov, Hall, Rendall, Mcintosh) Let W i
jkℓ

be a tensor in R
4 such that it is skew-symmetric with respect to k, ℓ and

such that its traces W a
akℓ and W a

jaℓ vanish. Assume that for all 1-forms

ξi 6= 0 we have W a
jkℓξa 6= 0. Then, the equations (7) have no more than

one-dimensional space of solutions.



Thus, for generic Γ, we can algorithmically reconstruct the conformal
class of the metric ḡ by solving the system of linear equations (7). Then,
we obtain the ansatz

σij = eλaij , where aij is known and comes from (7).
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Thus, for generic Γ, we can algorithmically reconstruct the conformal
class of the metric ḡ by solving the system of linear equations (7). Then,
we obtain the ansatz

σij = eλaij , where aij is known and comes from (7).

Substituting it in in
(
∇aσ

bc
)
− 1

n+1

(
∇iσ

ibδc
a + ∇iσ

icδb
a

)
= 0, we obtain

an inhomogeneous system of linear equations on the components ∂λ
∂x i

that gives us ∂λ
∂x i . Finally, we can obtain the function λ, and, therefore,

the metric ḡ , by integration.
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Theorem (Matveev arXiv:1101.2069) Almost every 4D metric is
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Theorem (Matveev arXiv:1101.2069) Almost every 4D metric is
geodesically rigid and can be reconstructed by an algorithm similar to the
one above (the algorithm requires solution of linear system of equations
and integration).

What we understand under almost every? We consider the standard
uniform C 2−topology: the metric g is ε−close to the metric ḡ in this
topology, if the components of g and their first and second derivatives
are ε−close to that of ḡ . ‘Almost every’ in the statement of Theorem
above should be understood as

the set of geodesically ri-
gid 4D metrics contains an
open everywhere dense (in
C 2-topology) subset.

A r b i t r a r y  s m a l l  n e i g h b o r h o o d   o f  g  
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Arb i t r a r y  
me t r i c   g   
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The result survives for all n ≥ 4. The result survives in D3, if we replace
the uniform C 2− topology by the uniform C 3-topology. In D2, the result
is again true, if we replace the uniform C 2− topology by the uniform
C 8-topology.
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geodesically equivalent metrics (4-dimensional and of
Lorenz signature): joint with A. Bolsinov

Notation: Given g and ḡ on M, we consider

L(g , ḡ) = Li
j :=

(
det(ḡ)

det(g)

) 1
n+1

ḡ ikgkj . (8)

The construction of nonproportional geodesically equivalent metrics is
based on the Splitting-Glueing procedures (Matveev-Bolsinov 2009).
Consider two (M1, h1 ∼ h̄1) and (M2, h2 ∼ h̄2). Assume L1 = L(h1, h̄1)

and L2 = L(h2, h̄2) have no common eigenvalues in the sense that
∀x ∈ M1, ∀y ∈ M2 Spectrum L1(x) ∩ Spectrum L2(y) = ∅.
Theorem (Gluing Lemma). Then, the metrics

g =

(
h1χ2(L1) 0

0 h2χ1(L2)

)

, ḡ =

(
1

χ2(0) h̄1χ2(L1) 0

0 1
χ1(0) h̄2χ1(L2)

)

.

on M1 × M2, where χi is the characteristic polynomial of Li , are
geodesically equivalent.
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g =

(
h1χ2(L1) 0

0 h2χ1(L2)

)

, ḡ =

(
1

χ2(0) h̄1χ2(L1) 0

0 1
χ1(0) h̄2χ1(L2)

)
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Example. We we take two 1-dimensional manifolds
(

I1, h1 = dx2, h̄1 =
1

X (x)2
dx2

)

and

(

I2, h2 = −dy2, h̄2 = −
1

Y (x)2
dy2

)

.

The corresponding tensors L1 and L2 and their characteristic polynomials
are

L1 = (X (x)) ; L2 = (Y (y)) ; χ1(t) = t − X (x) ; χ2(t) = t − Y (y).
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)

.

The corresponding tensors L1 and L2 and their characteristic polynomials
are

L1 = (X (x)) ; L2 = (Y (y)) ; χ1(t) = t − X (x) ; χ2(t) = t − Y (y).

Plugging these data in the formula above, we obtain

g =
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Example. We we take two 1-dimensional manifolds
(

I1, h1 = dx2, h̄1 =
1

X (x)2
dx2

)

and

(

I2, h2 = −dy2, h̄2 = −
1

Y (x)2
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)

.

The corresponding tensors L1 and L2 and their characteristic polynomials
are

L1 = (X (x)) ; L2 = (Y (y)) ; χ1(t) = t − X (x) ; χ2(t) = t − Y (y).

Plugging these data in the formula above, we obtain

g =

(
X (x) − Y (y)
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)

∼ ḡ =

(
X (x)−Y (y)
X (x)2Y (y)

X (x)−Y (y)
X (x)Y (y)2 .

)

We see that these metrics are precisely the Dini metrics from the
introduction of my talk.
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Building blocks and Splitting Lemma

Def. Building block is (U ⊂ R
m, h ∼ h̄) such that at every point L(h, h1)

has only one real eigenvalue, or two complex-conjugate eigenvalues.

Theorem (Splitting Lemma; Bolsinov – Matveev 2009). Every pair
of geodesically equivalent metrics h and h̄ in a neighborhood of almost
every point can be obtained (up to a coordinate change) by applying
gluing construction to building blocks.

Thus, in order to describe the 4D geodesically equivalent metrics of
Lorenz signature, we need to describe all possible building blocks of
dimensions 1,2,3. Fortunately, it was done before.

The only possible 1-dimensional building block was described above:

(

I1, h1 = dx2, h̄1 =
1

X (x)2
dx2

)

and

(

I2, h2 = ±dy2, h̄2 = ±
1

Y (x)2
dy2

)

.



Two-dimensional building blocks were described in
Bolsinov-Matveev-Pucacco 2009 (see also Darboux 1886
and Petrov 1949)

Complex-Liouville case Jordan-block case

g ℑ(h)dxdy (1 + xY ′(y)) dxdy

ḡ

−
(

ℑ(h)
ℑ(h)2+ℜ(h)2

)2
dx2

+
2 ℜ(h)ℑ(h)

(ℑ(h)2+ℜ(h)2)2
dxdy

+
(

ℑ(h)
ℑ(h)2+ℜ(h)2

)2
dy2

1+xY ′(y)
Y (y)4

(
−2Y (y)dxdy

+(1 + xY ′(y))dy2
)

Trivial block: ḡ = const · g .



Three-dimensional building blocks were described in Petrov
1949 and Eisenhart 1925

g =
(

4 x2

(
d

dx3
λ (x3)

)

+ 2
)

dx1dx3 + dx2
2

+ 2 x1

(
d

dx3
λ (x3)

)

dx2dx3 + x1
2
(

d
dx3

λ (x3)
)2

dx3
2,

ḡ = 1

λ(x3)6

[ (

4 x2λ (x3)2
(

d
dx3

λ (x3)
)

+ 2 λ (x3)2
)

dx1dx3 + λ (x3)2 dx2
2

−

(

4 x2λ (x3)
(

d
dx3

λ (x3)
)

+ 2λ (x3) − 2 x1λ (x3)2
(

d
dx3

λ (x3)
))

dx2dx3

+

(

4 x2
2
(

d
dx3

λ (x3)
)2

+ 4 x2

(
d

dx3
λ (x3)

)

− 4 x1x2λ (x3)
(

d
dx3

λ (x3)
)2
)

dx3
2

+

(

1 + x1
2λ (x3)2

(
d

dx3
λ (x3)

)2
− 2 x1λ (x3)

(
d

dx3
λ (x3)

))

dx3
2
]

where λ is a function of x3, and

g = 2 dx3dx1 + h (x2, x3)11 dx2
2 + 2 h(x2, x3)12dx2dx3 + h(x2, x3)22dx3

2,

ḡ = 2 α dx3dx1 + α h (x2, x3)11dx2
2 + 2 α h (x2, x3)12dx2dx3 + βdx3

2 + α h (x2, x3)22dx3
2,

where α and β are constants.



Success report

We have described explicitly all building blocks that can be used in
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Success report

We have described explicitly all building blocks that can be used in
constructing 4D metrics of Lorenz signature; Splitting-Gluing Lemmas
give us the explicit construction. Let us count the number of cases: we
can represent 4 as the sum of natural numbers by 4 different ways:

Dim of blocks Description of blocks # of cases

1+1+1+1
All building blocks are one-dimensional, and
the metric is essentially the Levi-Civita me-
tric from the introduction

1

1+1+2
The first two building blocks are one-
dimensional, the third is two-dimensional

3

2+2
Both building blocks are two-dimensional; at
least one of them is trivial (i.e., h̄ = const·h)

3

1+3
The first building block is one-dimensional,
the second is three-dimensional (‘Petrov’,
‘Eisenhart’, or trivial)

3



Summary: I said something about all this (sub)problems

◮ Problem 1. How to reconstruct a metric by its
unparameterized geodesics?

◮ Subproblem 1.1. Given a big family of curves γ(t; a), how to
understand whether these curves are reparameterised geodesics
of a certain affine connection? How to reconstruct this
connection effectively? Solved completely

◮ Subproblem 1.2. Given an affine connection Γ = Γi
jk , how to

understand whether there exists a metric g in the projective
class of Γ? How to reconstruct this metric effectively?
Suggested an effective way for Ricci-flat metrics

◮ Problem 2. In what situations is the reconstruction of a metric by
the unparameterised geodesics unique (up to the multiplication of
the metric by a constant)?

◮ Subproblem 2.1. What metrics ‘interesting’ for general
relativity are geodesically rigid? Almost every metric is
geodesically rigid

◮ Subproblem 2.2. Construct all pairs of nonproportional
geodesically equivalent metrics. Solved completely



Thank you!!!


