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Introduction

We define two transforms of a non-conformal harmonic map from a surface into the
3-sphere. Using these transforms one can in fact construct a sequence {f p | p ∈ Z}
of non-conformal harmonic maps. The transforms were inspired by the articles [3]
and [1] and are generalisations of Lawson’s polar construction for minimal surfaces in

the 3-sphere (see [6]). Our motivation to investigate non-conformal harmonic maps is
the study of almost complex surfaces in the nearly Kähler manifold S3×S3. We show

how to associate an almost complex surface in the nearly Kähler manifold S3 × S3

to a harmonic map in the 3-sphere. As a consequence one can associate to an al-

most complex surface in S3 × S3 a sequence of almost complex surfaces. The results
presented in this poster can be found in [5].

Harmonic maps into S3

We identify the Euclidean space R
4 with the ring of quaternions H. The 3-sphere S3

then is the set of unit quaternions {p ∈ H | ‖p‖ = 1}. Elementary quaternion algebra

shows that pα is orthogonal to p for every imaginary quaternion α. Therefore the
tangent space at p is

TpS
3 = {pα | α ∈ ImH}. (1)

On a surface we will use complex coordinates, so in order to describe the complexified
tangent vectors we need the complexified quaternions H⊗C = H⊕iH. The element i

should not be considered as an element of H. The complex bilinear extension of the
Euclidean metric on R4 will be denoted by 〈 , 〉. The conjugate of a complexified

quaternion p = p1 + ip2 is equal to p̄ = p1 − ip2.
Now consider a non-conformal harmonic map f : S → S3 ⊂ H from a Riemann sur-

face S into the 3-sphere S3. Choose a local complex coordinate z = x+ iy on S and
write ∂ := ∂

∂z
and ∂̄ := ∂

∂z̄
. We introduce the H⊗ C-valued function

f1 = ∂f.

Since 〈f, f〉 = 1, it follows that 〈f, f1〉 = 0. Harmonicity means that ∂∂̄f = −|∂f |2f .
By the harmonicity of f , the function 〈f1, f1〉 is holomorphic. The map f is non-

conformal, i.e. 〈f1, f1〉 is non-zero, so there exists a complex coordinate z, such that

〈f1, f1〉 = −1.

We will call such a coordinate an adapted complex coordinate for f . By (1) there exist
functions α and β with values in ImH such that f1 =

1

2
f(α−iβ). Then 〈f1, f1〉 = −1

gives 〈α, α〉 − 〈β, β〉 = −4 and 〈α, β〉 = 0. Hence there is a non-negative smooth
function φ such that |α| = 2 sinhφ and |β| = 2 coshφ.

Note that α can be zero. We will work on the open subset of S where α 6= 0. On
this set we define the normal N as the real unit vector in the direction of f(α× β).
Now we have a complex moving frame F = {f, f1, f̄1, N}.
Lemma 1. The moving frame equations for the frame F are

∂f = f1,

∂f1 = f + 2∂φ(coth 2φ f1 + csch 2φ f̄1) + µN,

∂f̄1 = − cosh 2φ f,

∂N = −µ csch 2φ(csch 2φ f1 + coth 2φ f̄1),

(2)

where µ = 〈∂f1, N〉. The compatibility conditions ∂∂̄F = ∂̄∂F for F are

2∂∂̄φ = − sinh 2φ+ |µ|2 csch 2φ,
∂̄µ = −2µ̄∂φ csch 2φ.

(3)

If f is a map into a great 2-sphere, then µ vanishes and the above compatibility
condition for φ becomes the sinh-Gordon equation.

Sequences of harmonic maps

Now consider the transformations

f+ =
i

2
sech2 φ(f1 − f̄1) + tanhφN,

f− = − i

2
sech2 φ(f1 − f̄1) + tanhφN.

Note that if f would be conformal, that is, if |α| = |β|, these transforms reduce to
Lawson’s polar surface N (see [6]). The following theorems can be proven by the

moving frame equations (2) and the compatibility conditions (3) for the frame F .

Theorem 1. Let f : S → S3 be a non-conformal harmonic map from a Riemann

surface S into the 3-sphere. Then the tranforms f+ and f− are also non-conformal

harmonic maps from S to S3. Furthermore, an adapted complex coordinate for f is

also an adapted complex coordinate for f+ and f−.

Theorem 2. Let f : S → S3 be a non-conformal harmonic map. Then the

(+)transform and (−)transform of f are mutual inverses in the sense that

(f+)− = (f−)+ = f.

By these theorems we can associate to a non-conformal harmonic map f : S → S3 a

sequence {f p | p ∈ Z} of such harmonic maps by defining f 0 = f and, for every inte-
ger p, f p+1 = (f p)+ and f p−1 = (f p)−. Moreover z is an adapted complex coordinate

for every map in the sequence.

Almost complex surfaces in S3 × S3

The last result tells us that to a harmonic map into the 3-sphere we can associate

an almost complex surface in the nearly Kähler manifold S3 × S3. For the
definitions and details on S3 × S3 and its almost complex surfaces we refer to [2].

Theorem 3. To a harmonic map from a simply connected surface into the 3-

sphere S3 one can associate an almost complex surface in S3 × S3, and vice versa.

Moreover the harmonic map is non-conformal if and only if the associated almost

complex surface has non-vanishing holomorphic differential.

Main idea of proof. Consider a harmonic map f : S → S3 with adapted complex

coordinate z = x + iy. Then ∂f
∂x

= fα and ∂f
∂y

= fβ. The integrability condi-

tion ∂2f
∂x∂y

= ∂2f
∂y∂x

gives αy −βx = 2α×β and the harmonicity of f gives αx+βy = 0.

This harmonicity equation exactly is the integrability condition for the system of dif-
ferential equations

Xx = −β, Xy = α,

so this system has a R3-valued map X as a solution. The equation αy −βx = 2α×β

now becomes
Xxx +Xyy = −2Xx ×Xy

By performing a dilation, the surface satisfies the Wente equation Xxx + Xyy =

− 4√
3
Xx ×Xy. A correspondence theorem in [2] says that such a surface corresponds

to an almost complex surface in S3 × S3.

In [4] Li, Ma and the authors proved an existence and uniqueness theorem for almost
complex surfaces in S3 × S3 with non-vanishing differential. The theorem states that
such almost complex surfaces correspond to solutions φ and µ of the equations

∂∂̄φ = −1

3
sinh 2φ+

|µ|2
3

csch 2φ,

∂̄µ = 2µ̄∂φ csch 2φ,

where φ is a positive real function and µ is a complex function. Up to an appropriate
rescaling, these equations are equal to the compatibility conditions (3).
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