Sequences of harmonic maps in S^3

KU LEUVEN

Bart Dioos Joint work with Luc Vrancken

KU Leuven, Department of Mathematics, Geometry Section

XXIII International Fall Workshop on Geometry and Physics Granada, 2014

Introduction

We define two transforms of a non-conformal harmonic map from a surface into the 3-sphere. Using these transforms one can in fact construct a sequence $\{f^p \mid p \in \mathbb{Z}\}$ of non-conformal harmonic maps. The transforms were inspired by the articles [3] and [1] and are generalisations of Lawson's polar construction for minimal surfaces in the 3-sphere (see [6]). Our motivation to investigate non-conformal harmonic maps is the study of almost complex surfaces in the nearly Kähler manifold $S^3 \times S^3$. We show how to associate an almost complex surface in the nearly Kähler manifold $S^3 \times S^3$ to a harmonic map in the 3-sphere. As a consequence one can associate to an almost complex surface in $S^3 \times S^3$ a sequence of almost complex surfaces. The results presented in this poster can be found in [5].

– Harmonic maps into S^3

We identify the Euclidean space \mathbb{R}^4 with the ring of quaternions \mathbb{H} . The 3-sphere S^3 then is the set of unit quaternions $\{p \in \mathbb{H} \mid |p|| = 1\}$. Elementary quaternion algebra shows that $p\alpha$ is orthogonal to p for every imaginary quaternion α . Therefore the tangent space at p is

$$T_p S^3 = \{ p\alpha \mid \alpha \in \operatorname{Im} \mathbb{H} \}.$$
(1)

On a surface we will use complex coordinates, so in order to describe the complexified tangent vectors we need the complexified quaternions $\mathbb{H} \otimes \mathbb{C} = \mathbb{H} \oplus i\mathbb{H}$. The element i should not be considered as an element of \mathbb{H} . The complex bilinear extension of the Euclidean metric on \mathbb{R}^4 will be denoted by \langle , \rangle . The conjugate of a complexified quaternion $p = p_1 + ip_2$ is equal to $\bar{p} = p_1 - ip_2$.

Now consider a non-conformal harmonic map $f: S \to S^3 \subset \mathbb{H}$ from a Riemann surface S into the 3-sphere S^3 . Choose a local complex coordinate z = x + iy on S and write $\partial := \frac{\partial}{\partial z}$ and $\bar{\partial} := \frac{\partial}{\partial \bar{z}}$. We introduce the $\mathbb{H} \otimes \mathbb{C}$ -valued function

 $f_1 = \partial f.$

Since $\langle f, f \rangle = 1$, it follows that $\langle f, f_1 \rangle = 0$. Harmonicity means that $\partial \bar{\partial} f = -|\partial f|^2 f$. By the harmonicity of f, the function $\langle f_1, f_1 \rangle$ is holomorphic. The map f is non-conformal, i.e. $\langle f_1, f_1 \rangle$ is non-zero, so there exists a complex coordinate z, such that

Sequences of harmonic maps

Now consider the transformations

$$f^{+} = \frac{i}{2}\operatorname{sech}^{2}\phi(f_{1} - \bar{f}_{1}) + \tanh\phi N,$$

$$f^{-} = -\frac{i}{2}\operatorname{sech}^{2}\phi(f_{1} - \bar{f}_{1}) + \tanh\phi N.$$

Note that if f would be conformal, that is, if $|\alpha| = |\beta|$, these transforms reduce to Lawson's polar surface N (see [6]). The following theorems can be proven by the moving frame equations (2) and the compatibility conditions (3) for the frame \mathcal{F} .

Theorem 1. Let $f: S \to S^3$ be a non-conformal harmonic map from a Riemann surface S into the 3-sphere. Then the transforms f^+ and f^- are also non-conformal harmonic maps from S to S^3 . Furthermore, an adapted complex coordinate for f is also an adapted complex coordinate for f^+ and f^- .

Theorem 2. Let $f: S \to S^3$ be a non-conformal harmonic map. Then the (+)transform and (-)transform of f are mutual inverses in the sense that $(f^+)^- = (f^-)^+ = f.$

By these theorems we can associate to a non-conformal harmonic map $f: S \to S^3$ a sequence $\{f^p \mid p \in \mathbb{Z}\}$ of such harmonic maps by defining $f^0 = f$ and, for every integer p, $f^{p+1} = (f^p)^+$ and $f^{p-1} = (f^p)^-$. Moreover z is an adapted complex coordinate for every map in the sequence.

Almost complex surfaces in $S^3 \times S^3$

The last result tells us that to a harmonic map into the 3-sphere we can associate an almost complex surface in the nearly Kähler manifold $S^3 \times S^3$. For the definitions and details on $S^3 \times S^3$ and its almost complex surfaces we refer to [2].

Theorem 3. To a harmonic map from a simply connected surface into the 3sphere S^3 one can associate an almost complex surface in $S^3 \times S^3$, and vice versa.

 $\langle f_1, f_1 \rangle = -1.$

We will call such a coordinate an *adapted complex coordinate for* f. By (1) there exist functions α and β with values in Im \mathbb{H} such that $f_1 = \frac{1}{2}f(\alpha - i\beta)$. Then $\langle f_1, f_1 \rangle = -1$ gives $\langle \alpha, \alpha \rangle - \langle \beta, \beta \rangle = -4$ and $\langle \alpha, \beta \rangle = 0$. Hence there is a non-negative smooth function ϕ such that $|\alpha| = 2 \sinh \phi$ and $|\beta| = 2 \cosh \phi$.

Note that α can be zero. We will work on the open subset of S where $\alpha \neq 0$. On this set we define the normal N as the real unit vector in the direction of $f(\alpha \times \beta)$. Now we have a complex moving frame $\mathcal{F} = \{f, f_1, \overline{f_1}, N\}$.

Lemma 1. The moving frame equations for the frame \mathcal{F} are

$$\partial f = f_1,$$

$$\partial f_1 = f + 2\partial\phi(\coth 2\phi f_1 + \operatorname{csch} 2\phi \bar{f}_1) + \mu N,$$

$$\partial \bar{f}_1 = -\cosh 2\phi f,$$

$$\partial N = -\mu \operatorname{csch} 2\phi(\operatorname{csch} 2\phi f_1 + \operatorname{coth} 2\phi \bar{f}_1),$$

(2)

where
$$\mu = \langle \partial f_1, N \rangle$$
. The compatibility conditions $\partial \bar{\partial} \mathcal{F} = \bar{\partial} \partial \mathcal{F}$ for \mathcal{F} are

$$2\partial\bar{\partial}\phi = -\sinh 2\phi + |\mu|^2 \operatorname{csch} 2\phi,$$

$$\bar{\partial}\mu = -2\bar{\mu}\partial\phi\operatorname{csch} 2\phi.$$
 (3)

If f is a map into a great 2-sphere, then μ vanishes and the above compatibility condition for ϕ becomes the sinh-Gordon equation.

Moreover the harmonic map is non-conformal if and only if the associated almost complex surface has non-vanishing holomorphic differential.

Main idea of proof. Consider a harmonic map $f: S \to S^3$ with adapted complex coordinate z = x + iy. Then $\frac{\partial f}{\partial x} = f\alpha$ and $\frac{\partial f}{\partial y} = f\beta$. The integrability condition $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ gives $\alpha_y - \beta_x = 2\alpha \times \beta$ and the harmonicity of f gives $\alpha_x + \beta_y = 0$. This harmonicity equation exactly is the integrability condition for the system of differential equations

$$X_x = -\beta, \qquad \qquad X_y = \alpha$$

so this system has a \mathbb{R}^3 -valued map X as a solution. The equation $\alpha_y-\beta_x=2\alpha\times\beta$ now becomes

$$X_{xx} + X_{yy} = -2 X_x \times X_y$$

By performing a dilation, the surface satisfies the Wente equation $X_{xx} + X_{yy} = -\frac{4}{\sqrt{3}}X_x \times X_y$. A correspondence theorem in [2] says that such a surface corresponds to an almost complex surface in $S^3 \times S^3$.

In [4] Li, Ma and the authors proved an existence and uniqueness theorem for almost complex surfaces in $S^3 \times S^3$ with non-vanishing differential. The theorem states that such almost complex surfaces correspond to solutions ϕ and μ of the equations

$$\begin{split} \partial \bar{\partial} \phi &= -\frac{1}{3} \sinh 2\phi + \frac{|\mu|^2}{3} \operatorname{csch} 2\phi, \\ \bar{\partial} \mu &= 2\bar{\mu} \partial \phi \operatorname{csch} 2\phi, \end{split}$$

where ϕ is a positive real function and μ is a complex function. Up to an appropriate rescaling, these equations are equal to the compatibility conditions (3).

References

- [1] M. Antic and L. Vrancken. Sequences of minimal surfaces in S^{2n+1} . Israel J. Math., 179(1):493–508, 2010.
- [2] J. Bolton, F. Dillen, B. Dioos, and L. Vrancken. Almost complex surfaces in the nearly Kähler $S^3 \times S^3$, 2013. To appear in Tohoku Math. J.
- [3] J. Bolton and L. Vrancken. Transforms for minimal surfaces in the 5-sphere. Differential Geom. Appl., 27:34–46, 2009.
- [4] B. Dioos, H. Li, H. Ma, and L. Vrancken. Flat almost complex surfaces in $S^3 \times S^3$. Preprint, 2014.
- [5] B. Dioos and L. Vrancken. Sequences of harmonic maps in the 3-sphere, 2014. Preprint. arXiv:1408.4414.
- [6] H.B. Lawson. Complete minimal surfaces in S³. Ann. Math., 92:335–374, 1970.