Real hypersurfaces with two principal curvatures in complex projective and hyperbolic planes

Cristina Vidal Castiñeira

Joint work with: J. C. Díaz Ramos, M. Domínguez Vázquez

Department of Geometry and Topology, University of Santiago de Compostela, Spain

E-mail: cristina.vidal@usc.es

XXIII International Fall Workshop on Geometry and Physics, Granada 2014
September 2-5, 2014, Granada, Spain.

Introduction

 $\bar{M}^n(c)=\mathbb{C}P^n$ or $\mathbb{C}H^n$ (constant holomorphic curvature $c\neq 0$).

J complex structure, ∇ Levi-Civita conection. $M\subset \bar{M}^n(c)$ real hypersurface with unit normal vector ξ .

 $S\xi = -\bar{\nabla}_X \xi$ shape operator.

Principal curvatures: eigenvalues of S.

Main problem:

Classification of real hypersurfaces in $\mathbb{C}P^n$ and $\mathbb{C}H^n$ with a fixed number of principal curvatures.

- 1 principal curvature: impossible [7].
- 2 principal curvatures:
 - $n \ge 3$: [2] for $\mathbb{C}P^n$ and [4] for $\mathbb{C}H^n$. They are homogeneous (\Rightarrow constant principal curvatures) and Hopf $(SJ\xi = \lambda J\xi)$.

Examples in $\mathbb{C}H^n$:

Geodesic spheres

Tubes around a totally geodesic $\mathbb{C}H^{n-1}$

Horospheres

Tubes of radius $r=\frac{1}{\sqrt{-c}}\log(2+\sqrt{3})$ around a totally geodesic $\mathbb{R}H^n$

 $\bullet n = 2$:

[5, Question 9.2]:

Are there hypersurfaces in $\mathbb{C}P^2$ or $\mathbb{C}H^2$ that have two principal curvatures, other than the standard examples?

Construction idea

H group acting polarly on $M^n(c)$ with cohomogenity two [1, 6] (that is, there exists a two-dimensional submanifold Σ that intersects all the orbits of H orthogonally).

 $\gamma:(-\varepsilon,\varepsilon)\to\Sigma$: regular curve in Σ .

$$H \cdot \gamma = \{h(\gamma(t)) : h \in H, t \in (-\varepsilon, \varepsilon)\}$$

Generically $H\cdot \gamma$ has 3 principal curvatures.

 $H \cdot \gamma$ has 2 principal curvatures $\Leftrightarrow \gamma$ satisfies an ODE.

By the existence of solutions to ODEs, such hypersurfaces exist.

Idea if $\bar{M}^2(c)=\mathbb{C}P^2$:

If $\bar{M}^2(c)=\mathbb{C}H^2$, then $\Sigma=\mathbb{R}H^2$.

Main Theorem [3]

Any hypersurface with 2 nonconstant principal curvatures in $\bar{M}^2(c)$ that is not Hopf, is locally congruent to an open part of a real hypersurface constructed as above.

References

^[1] J. Berndt, J. C. Díaz-Ramos: Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, Ann. Global Anal Geom. 43 (2013), 99-106

^[2] T. E. Cecil, P. J. Ryan: Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), no. 2, 481-499.

^[3] J. C. Díaz-Ramos, M. Domínguez-Vázquez, C. Vidal-Castiñeira: Real hypersurfaces with two principal curvatures in complex projective and hyperbolic planes, arXiv:1310.0357v1 [math.DG].

^[4] S. Montiel: Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan 37 (1985), 515-535.

^[5] R. Niebergall, P. J. Ryan: Real Hypersurfaces in Complex Space Forms, Tight and Taut Submanifolds, MSRI Publications, Volume 32, 1997.

^[6] F. Podestà, G. Thorbergsson: Polar actions on rank-one symmetric spaces, J. Differential Geom. 53 (1999), no. 1, 131-175.

^[7] Y. Tashiro, S. I. Tachibana: On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep. 15 (1963), 176-183.