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Introduction

M"(c) = CP" or CH" (constant holomorphic cur-
vature ¢ # 0).

J complex structure, V Levi-Civita conection.

M C M"c) real hypersurface with unit normal
vector &.

S¢ = —V x€ shape operator.

Principal curvatures: eigenvalues of S.

Main problem:

Classification of real hypersurfaces in CP" and
CH" with a fixed number of principal curvatures.

= 1 principal curvature: impossible [7].

m 2 principal curvatures:

oen > 3: [2] for CP" and [4] for CH". They are
homogeneous (= constant principal curvatures)

and Hopf (SJ¢& = A\JE).
Examples in CH™:

Tubes of radius r =

T]og 2—1—\/_ around a
totally geodesic RH"

Tubes around a totally Horospheres

geodesic CH" !

Geodesic spheres

o — 2:

[5, Question 9.2]:

Are there hypersurfaces in CP? or CH?
that have two principal curvatures, other
than the standard examples?
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Construction idea

H group acting polarly on M"(c) with cohomoge-
nity two [1, 6] (that is, there exists a two-dimensional
submanifold > that intersects all the orbits of H
orthogonally).

v : (—&,e) — X regular curve in X
H-~v={h(v(t)):he Ht e (—¢,e)}
Generically H - v has 3 principal curvatures.

H -~ has 2 principal curvatures < ~y satisfies an
ODE.

By the existence of solutions to ODEs, such hyper-
surfaces exist.

ldea if M*(c) = CP~:

/

Wid

Y =R P2

If M2(c) = CH?, then ¥ = RH?.

Main Theorem |[3]

Any hypersurface with 2 nonconstant principal

curvatures in M?(c) that is not Hopf, is locally

congruent to an open part of a real hypersurface

constructed as above.
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