The Splitting Problem in Riemannian and Lorentzian Geometry

Lectures on Lorentzian Geometry
Universidad de Granada

José Luis Flores
Universidad de Málaga
Plan of the Lecture

- Introduction
- Riemannian Splitting Theorem
 - Cheeger-Gromoll’s Proof
 - Eschenburg-Heintze’s Proof
- Preliminaries on Lorentzian Geometry
- Lorentzian Splitting Theorem
 - Preliminary results: super-harmonicity; nice neighborhoods, convexity
 - Proof of the theorem: 6 steps
- Open Problem: Bartnik’s Conjecture
Introduction
Introduction

Rigidity in Geometry:

- Sometimes, it is useful to compare the geometry of a general manifold M with that of a simply connected model space M_K of constant curvature K.

- Typically, under certain “strict” curvature bounds in terms of K, M will retain particular geometrical properties of M_K.

- Once this has been established, it is usually possible to conclude that M retains topological properties of M_K as well.

- But, what happen when one relaxes the condition of “strict” curvature inequality to “weak” curvature inequality?
The conclusion may not hold any more. For example, observe the big difference between the topologies of:

\[
\text{Sphere } (K > 0) \neq \text{Eucliden space } (K = 0)
\]
The conclusion may not hold any more. For example, observe the big difference between the topologies of:

\[\text{Sphere} \ (K > 0) \neq \text{Eucliden space} \ (K = 0) \]

However, a conclusion which becomes false when one relaxes the condition of “strict” inequality to “weak” inequality usually can be shown to fail under very special circumstances!
The conclusion may not hold any more. For example, observe the big difference between the topologies of:

\[\text{Sphere} \ (K > 0) \neq \text{Eucliden space} \ (K = 0) \]

However, a conclusion which becomes false when one relaxes the condition of “strict” inequality to “weak” inequality usually can be shown to fail under very special circumstances!

Prototype Rigidity Result:

If \(M \) *satisfies a “weak” curvature inequality, and the geometric restriction derived from the “strict” curvature inequality does not hold, \(M \) must be “very special”.*
Theorem: (Gromoll, Meyer: *Ann. of Math*, 90, 75-90, 1969)

A complete Riemannian manifold \((M, g)\) of dimension \(n \geq 2\) such that \(\text{Ric}(v, v) > 0\) for all \(v \in TM\) is connected at infinity.

Suppose that \(\text{Ric}(v, v) \geq 0\) and that \((M, g)\) fails to be connected at infinity.

Since \(M\) is assumed to be complete, there exists a line (i.e. a complete unitary geodesic \(\gamma : \mathbb{R} \to (M, g)\) realizing the distance between any two of its points) joining any two ends of \(M\).

Then, Cheeger and Gromoll proved that \((M, g)\) must be isometric to a product manifold.
More precisely:

Theorem: (Cheeger, Gromoll: *J. Diff. Geom.*, 6, 119-128, 1971)

Suppose that the Riemannian manifold \((M, g)\), of dimension \(n \geq 2\), satisfies the following conditions:

1. \((M, g)\) is geodesically complete,
2. \(\text{Ric}(v, v) \geq 0\) for all \(v \in TM\),
3. \(M\) has a line.

Then \(M\) is isometric to the product \((M, g) \cong (\mathbb{R}^k \times M_1, g_0 \oplus g_1)\), \(k > 0\), with \(M_1\) containing no lines and \(g_0\) the standard metric on \(\mathbb{R}^k\).
In 1982, Yau proposed to obtain the Lorentzian analog of this result. As consequence:

Theorem (Lorentzian Splitting):

Suppose that the spacetime \((M, g)\), of dimension \(n > 2\), satisfies the following conditions:

1. \((M, g)\) is timelike geodesically complete or globally hyperbolic,
2. \(\text{Ric}(v, v) \geq 0\) for all timelike \(v \in TM\),
3. \(M\) has a timelike line.

Then \(M\) splits isometrically as \((M, g) \cong (\mathbb{R} \times M_1, -dt^2 \oplus g_1)\), where \((M_1, g_1)\) is a complete Riemannian manifold.
Riemannian Splitting Theorem
Theorem (Riemannian Splitting):

Suppose that the Riemannian manifold \((M, g)\), of dimension \(n \geq 2\), satisfies the following conditions:

1. \((M, g)\) is geodesically complete
2. \(Ric(v, v) \geq 0\) for all \(v \in TM\)
3. \(M\) has a line.

Then \(M\) is isometric to the product \((M, g) \cong (\mathbb{R}^k \times M_1, g_0 \oplus g_1)\), \(k > 0\), with \(M_1\) containing no lines and \(g_0\) the standard metric on \(\mathbb{R}^k\).
History of the Problem:

- In 1964 Topogonov obtained the splitting under the more restrictive assumption of nonnegative sectional curvature.
- The proof of the Topogonov’s result lies on the Triangle Comparison Theorem, which does not work for nonnegative Ricci manifolds.
- Cheeger and Gromoll wanted to extend the existing results on the fundamental group to these less restrictive manifolds...for which they needed a splitting theorem (Cohn-Vossen’36, dim= 2).
- The first proof of the theorem was obtained by these authors in 1971, and was simplified later by Eschenburg and Heintze (1984).
Some Previous Definitions:
A curve γ is called a *ray* if it is a unitary geodesic defined on $[0, \infty)$ which realizes the distance between any of its points.
Some Previous Definitions:

- A curve γ is called a ray if it is a unitary geodesic defined on $[0, \infty)$ which realizes the distance between any of its points.

- Given a ray γ, the Busemann function (associated to γ) is defined as the limit

$$b_\gamma(\cdot) := \lim_{r \to \infty} (r - d(\cdot, \gamma(r))).$$

Busemann function b_γ always exists ($< \infty$) and is continuous.
Some Previous Definitions:

- A curve γ is called a ray if it is a unitary geodesic defined on $[0, \infty)$ which realizes the distance between any of its points.

- Given a ray γ, the Busemann function (associated to γ) is defined as the limit

$$b_\gamma(\cdot) := \lim_{r \to \infty} (r - d(\cdot, \gamma(r))).$$

Busemann function b_γ always exists ($< \infty$) and is continuous.

- Given a line γ, there are two natural rays associated to γ:

$\gamma_+ := \gamma|_{[0, \infty)}$ and $\gamma_-(t) := \gamma(-t)$, $t \in [0, \infty)$. We will denote by b_\pm the corresponding Busemann functions associated to γ_\pm.
Given a ray γ, we say that $\alpha : [0, \infty) \to M$ is an *asymptote* to γ if it is a ray which arises as limit of minimal geodesic segments from some p to $\gamma(r_n)$.
Riemannian Splitting Theorem

- Given a ray \(\gamma \), we say that \(\alpha : [0, \infty) \to M \) is an asymptote to \(\gamma \) if it is a ray which arises as limit of minimal geodesic segments from some \(p \) to \(\gamma(r_n) \).
- Asymptotes from some point are not necessarily unique.
Riemannian Splitting Theorem

- Given a ray γ, we say that $\alpha : [0, \infty) \to M$ is an asymptote to γ if it is a ray which arises as limit of minimal geodesic segments from some p to $\gamma(r_n)$.

- Asymptotes from some point are not necessarily unique.

- Assume $\alpha : [0, \infty) \to M$ is an asymptote to γ. Using TI, one derives:

$$b(\alpha(t)) = t + b(\alpha(0)) \quad \forall t \in [0, \infty).$$
Riemannian Splitting Theorem

Cheeger and Gromoll’s Proof:
Cheeger and Gromoll’s Proof:

Let γ be the line from the hypotheses of the theorem. From TI,

$$b_+ + b_- \leq 0 \quad \text{on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \quad \text{on } \gamma.$$
Cheeger and Gromoll’s Proof:

- Let \(\gamma \) be the line from the hypotheses of the theorem. From TI,
 \[b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma. \]

- Next, we establish the main ingredient of the proof: the sub-harmonic character of Busemann functions \(b_\pm \).

Theorem: *If the Ricci tensor is nonnegative then functions \(b_\pm \) are sub-harmonic.*
Cheeger and Gromoll’s Proof:

Let γ be the line from the hypotheses of the theorem. From TI,

$$b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma.$$

Next, we establish the main ingredient of the proof: the sub-harmonic character of Busemann functions b_\pm.

Theorem: If the Ricci tensor is nonnegative then functions b_\pm are sub-harmonic.

A function f is sub-harmonic if, given any connected compact region D in M with smooth boundary ∂D, one has $f \leq h$ on D, for h the continuous function on D, harmonic on int D, with $h |_{\partial D} \equiv f |_{\partial D}$.
Proof of the theorem:

- Denote by $d_p(\cdot) := d(\cdot, p)$ the distance function to p. Then

$$\Delta d_p(q) \leq (n - 1)/d_p(q) \quad \text{for any } q \text{ outside the cut locus of } p.$$

- One is tempted to deduce that $b_\gamma(\cdot) = \lim_r (r - d_\gamma(r)(\cdot))$ should have nonnegative Laplacian $\Delta b_\gamma \geq 0$, thus sub-harmonic.

- But notice that $d_\gamma(r)$ is not differentiable on the cut locus of $\gamma(r)$, and so, b_γ may not be differentiable anywhere.

- Even though b_γ were differentiable almost everywhere with $\Delta b_\gamma \geq 0$, the conclusion is not clear at all.

- A sophisticated analysis of the behavior of the gradient near the points of non-differentiability is needed.

- The conclusion follows by taking sequences of approximations to b_γ in pertinent regions. ☐
From previous inequalities and the sub-harmonic character of b_\pm, one deduces that b_\pm are differentiable and harmonic on M.
Riemannian Splitting Theorem

From previous inequalities and the sub-harmonic character of b_{\pm}, one deduces that b_{\pm} are differentiable and harmonic on M.

- Let $q \in \gamma$, D connected compact region with $q \in \text{int}D$.
- Let h_{\pm} continuous on D, harmonic on $\text{int}D$, $h_{\pm} \mid_{\partial D} = b_{\pm} \mid_{\partial D}$ (hence $h_+ + h_- = b_+ + b_- \leq 0$ on ∂D).
- From the Maximum Principle $h_+(q) + h_-(q) \leq 0 = b_+(q) + b_-(q)$.
- But b_{\pm} sub-harmonic $\Rightarrow b_{\pm}(q) \leq h_{\pm}(q) \Rightarrow b_{\pm}(q) = h_{\pm}(q)$.
- Then, $b_{\pm} - h_{\pm}$ sub-harmonic, $b_{\pm} - h_{\pm} = 0$ on ∂D, $(b_{\pm} - h_{\pm})(q) = 0$ $\Rightarrow b_{\pm} = h_{\pm}$ on D.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.27/145
From previous inequalities and the sub-harmonic character of b_\pm, one deduces that b_\pm are differentiable and harmonic on M.

- Let $q \in \gamma$, D connected compact region with $q \in \text{int}D$.
- Let h_\pm continuous on D, harmonic on $\text{int}D$, $h_\pm |_{\partial D} = b_\pm |_{\partial D}$ (hence $h_+ + h_- = b_+ + b_- \leq 0$ on ∂D).
- From the Maximum Principle $h_+(q) + h_-(q) \leq 0 = b_+(q) + b_-(q)$.
- But b_\pm sub-harmonic $\Rightarrow b_\pm(q) \leq h_\pm(q) \Rightarrow b_\pm(q) = h_\pm(q)$.
- Then, $b_\pm - h_\pm$ sub-harmonic, $b_\pm - h_\pm = 0$ on ∂D, $(b_\pm - h_\pm)(q) = 0$ $\Rightarrow b_\pm = h_\pm$ on D.

$|\text{grad } b_+| \equiv 1$, and the integral curves of $\text{grad } b_+$ are geodesics.
Riemannian Splitting Theorem

- From previous inequalities and the sub-harmonic character of b_\pm, one deduces that b_\pm are differentiable and harmonic on M.

 - Let $q \in \gamma$, D connected compact region with $q \in \text{int} D$.

 - Let h_\pm continuous on D, harmonic on $\text{int} D$, $h_\pm |_{\partial D} = b_\pm |_{\partial D}$ (hence $h_+ + h_- = b_+ + b_- \leq 0$ on ∂D).

 - From the Maximum Principle $h_+(q) + h_-(q) \leq 0 = b_+(q) + b_-(q)$.

 - But b_\pm sub-harmonic $\Rightarrow b_\pm(q) \leq h_\pm(q) \Rightarrow b_\pm(q) = h_\pm(q)$.

 - Then, $b_\pm - h_\pm$ sub-harmonic, $b_\pm - h_\pm = 0$ on ∂D, $(b_\pm - h_\pm)(q) = 0 \Rightarrow b_\pm = h_\pm$ on D.

- $|\text{grad } b_+| \equiv 1$, and the integral curves of $\text{grad } b_+$ are geodesics.

 - $|b_+(p) - b_+(q)| \leq d(p, q) \Rightarrow |\text{grad } b_+| \leq 1$

 - $|b_+(p) - b_+(q)| = d(p, q)$, $p, q \in \sigma$ from p to γ.

 - $|\text{grad } b_+| = 1$, and σ is integral curve of $\text{grad } b_+$ through p.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.29/145
Denote $N := \text{grad} b_+$. Then $\nabla_N N = 0$, and using that b_+ is harmonic, a direct computation gives

$$Ric(N) = \sum_{i=1}^{n-1} \langle R(E_i, N)N, E_i \rangle$$

$$= \sum_{i=1}^{n-1} \langle \nabla_{E_i} \nabla_N N - \nabla_N \nabla_{E_i} N - \nabla_{[E_i, N]} N, E_i \rangle$$

$$= -N(\Delta b_+) - |\nabla N|^2$$

$$= -|\nabla N|^2.$$
Denote $N := \text{grad } b_+$. Then $\nabla_N N = 0$, and using that b_+ is harmonic, a direct computation gives

$$Ric(N) = \sum_{i=1}^{n-1} \langle R(E_i, N)N, E_i \rangle$$

$$= \sum_{i=1}^{n-1} \langle \nabla_{E_i} \nabla_N N - \nabla_N \nabla_{E_i} N - \nabla_{[E_i, N]} N, E_i \rangle$$

$$= -N(\Delta b_+) - |\nabla N|^2$$

$$= -|\nabla N|^2.$$

But $Ric(N) \geq 0$. Whence, $\nabla N \equiv 0$; that is, N is parallel.
Riemannian Splitting Theorem

- Denote $N := \text{grad } b_+$. Then $\nabla_N N = 0$, and using that b_+ is harmonic, a direct computation gives

$$Ric(N) = \sum_{i=1}^{n-1} \langle R(E_i, N)N, E_i \rangle$$
$$= \sum_{i=1}^{n-1} \langle \nabla_{E_i} \nabla_N N - \nabla_N \nabla_E_i N - \nabla_{[E_i, N]} N, E_i \rangle$$
$$= -N(\Delta b_+) - |\nabla N|^2$$
$$= -|\nabla N|^2.$$

- But $Ric(N) \geq 0$. Whence, $\nabla N \equiv 0$; that is, N is parallel.

- By the de Rham decomposition theorem, this map is isometry:

$$(b_+)^{-1}(0) \times \mathbb{R} \to M, \quad (p, t) \mapsto \exp(t \cdot \text{grad } b_+(p)).$$
Denote $N := \text{grad } b_+$. Then $\nabla_N N = 0$, and using that b_+ is harmonic, a direct computation gives

\[
Ric(N) = \sum_{i=1}^{n-1} \langle R(E_i, N)N, E_i \rangle
= \sum_{i=1}^{n-1} \langle \nabla_{E_i} \nabla_N N - \nabla_N \nabla_{E_i} N - \nabla_{[E_i, N]} N, E_i \rangle
= -N(\Delta b_+) - |\nabla N|^2
= -|\nabla N|^2.
\]

But $Ric(N) \geq 0$. Whence, $\nabla N \equiv 0$; that is, N is parallel.

By the de Rham decomposition theorem, this map is isometry:

$$(b_+)^{-1}(0) \times \mathbb{R} \to M, \quad (p, t) \mapsto \exp(t \cdot \text{grad } b_+(p)).$$

The conclusion follows by a finite induction on the lines of M. □
Remarks:

- This approach cannot be directly translated to the Lorentzian case because the D’alambertian operator is hyperbolic, not elliptic.
- There is an alternative approach which minimizes the use of the theory for elliptic operators.
- It is based on a direct application of the maximum principle together with a closer analysis of the geometry of the Busemann function associated to a line.
Riemannian Splitting Theorem

Eschenburg and Heintze’s Proof:
Eschenburg and Heintze’s Proof:

As in previous proof, we have:

\[b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma. \]
Riemannian Splitting Theorem

Eschenburg and Heintze’s Proof:

- As in previous proof, we have:

\[b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma. \]

- For any \(p, r \), we define \(b_{p,r}^\pm (x) := b_\pm(p) - r + d(x, \exp(rv)) \), where \(v \) is the direction of some asymptote from \(p \) to \(\gamma^\pm \).
Eschenburg and Heintze’s Proof:

- As in previous proof, we have:

 \[b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma. \]

- For any \(p, r \), we define \(b_{p,r}^\pm(x) := b_\pm(p) - r + d(x, \exp(rv)) \), where \(v \) is the direction of some asymptote from \(p \) to \(\gamma_\pm \).

- \(b_{p,r}^\pm \) lower support functions of \(b_\pm \) at \(p \), which are \(C^\infty \) around \(p \); i.e.

 \[b_{p,r}^\pm \leq b_\pm \text{ on } M, \quad b_{p,r}^\pm(p) = b_\pm(p). \]
Eschenburg and Heintze’s Proof:

- As in previous proof, we have:

 \[b_+ + b_- \leq 0 \text{ on } M \quad \text{and} \quad b_+ + b_- \equiv 0 \text{ on } \gamma. \]

- For any \(p, r \), we define \(b_{p,r}^\pm (x) := b_\pm(p) - r + d(x, \exp(rv)) \), where \(v \) is the direction of some asymptote from \(p \) to \(\gamma^\pm \).

- \(b_{p,r}^\pm \) lower support functions of \(b_\pm \) at \(p \), which are \(C^\infty \) around \(p \); i.e.

 \[b_{p,r}^\pm \leq b_\pm \text{ on } M, \quad b_{p,r}^\pm(p) = b_\pm(p). \]

- From the nonnegative Ricci curvature hypothesis, one has

 \[\Delta(b_{p,r}^+ + b_{p,r}^-) \geq -2(n - 1)/r. \]
Hopf-Calabi Max. Pple ’57:

Let M be a connected Riemannian manifold and $f \in C^0(M)$. If for each $p \in M$ and any $\epsilon > 0$ there is a support function $f_{p,\epsilon}$ of f at p which is C^2 in a neighborhood of p and satisfies $\Delta f_{p,\epsilon}(p) \geq -\epsilon$ then f attains no maximum unless it is constant.
Riemannian Splitting Theorem

- Hopf-Calabi Max. Pple ’57 $\Rightarrow b_+ + b_-$ attains no maximum unless it is constant.
Riemannian Splitting Theorem

- Hopf-Calabi Max. Pple ’57 ⇒ $b_+ + b_-$ attains no maximum unless it is constant.

- But $b_+ + b_-$ attains a maximum at γ; hence $b_+ + b_- \equiv 0$, and so, we have the sandwich

\[b^+_p \leq b_+ = -b_- \leq -b^-_p, \quad \text{with “=” at } p. \]
Hopf-Calabi Max. Pple ’57 $\Rightarrow b_+ + b__ \text{ attains no maximum unless it is constant.}$

But $b_+ + b__ \text{ attains a maximum at } \gamma; \text{ hence } b_+ + b__ \equiv 0, \text{ and so, we have the sandwich}$

$$b_+^\pm \leq b_+ = -b__ \leq -b__^\pm, \text{ with } “=" \text{ at } p.$$

b_\pm is once differentiable at p, and $\text{grad } b_\pm(p) = \text{grad } b_\pm^\pm(p)$, which implies

$$|\text{grad } b_+| = 1.$$
Hopf-Calabi Max. Pple ’57 ⇒ $b_+ + b_-$ attains no maximum unless it is constant.

But $b_+ + b_-$ attains a maximum at γ; hence $b_+ + b_- \equiv 0$, and so, we have the sandwich

$$b^+_{p,r} \leq b_+ = -b_- \leq -b^-_{p,r}, \quad \text{with “=” at } p.$$

b_\pm is once differentiable at p, and $\text{grad } b_\pm(p) = \text{grad } b^\pm_{p,r}(p)$, which implies

$$|\text{grad } b_+| = 1.$$

In particular, the asymptotes to γ_\pm at any p are uniquely determined and fit together to a line.
On the other hand, it can be proved that

\[
\lim_{r \to \infty} \text{Hess } b_{p,r}^\pm (p) = 0.
\]
On the other hand, it can be proved that

$$\lim_{r \to \infty} \text{Hess } b_{p,r}^\pm (p) = 0.$$

Thus, for any geodesic c, the functions $b_{\pm} \circ c$ admit support functions at any $t \in \mathbb{R}$ with arbitrarily small 2nd derivative at t.
On the other hand, it can be proved that

$$\lim_{{r \to \infty}} \text{Hess} \; b_{p,r}^\pm (p) = 0.$$

Thus, for any geodesic c, the functions $b^\pm \circ c$ admit support functions at any $t \in \mathbb{R}$ with arbitrarily small 2nd derivative at t.

Hence, the functions $b^\pm \circ c$ are convex by the (trivial 1-dim.) maximum principle.
On the other hand, it can be proved that

\[\lim_{r \to \infty} \text{Hess} b_{p,r}^\pm (p) = 0. \]

Thus, for any geodesic \(c \), the functions \(b_{\pm} \circ c \) admit support functions at any \(t \in \mathbb{R} \) with arbitrarily small 2\(^{nd}\) derivative at \(t \).

Hence, the functions \(b_{\pm} \circ c \) are convex by the (trivial 1-dim.) maximum principle.

Therefore, \(b_+ = -b_- \) is convex and concave, thus constant along geodesics.
On the other hand, it can be proved that

$$\lim_{r \to \infty} \text{Hess} \, b_{p,r}^\pm (p) = 0.$$

Thus, for any geodesic c, the functions $b_{\pm} \circ c$ admit support functions at any $t \in \mathbb{R}$ with arbitrarily small 2^{nd} derivative at t.

Hence, the functions $b_{\pm} \circ c$ are convex by the (trivial 1-dim.) maximum principle.

Therefore, $b_+ = -b_-$ is convex and concave, thus constant along geodesics.

Hence, b_+ has totally geodesic level sets, and so, $N = \text{grad} \, b_+$ is a parallel vector field.
By the de Rham decomposition theorem, this map is isometry:

\[(b_{+})^{-1}(0) \times \mathbb{R} \rightarrow M, \quad (p, t) \mapsto \exp(t \cdot N(p)).\]

The conclusion follows by a finite induction on the lines of \(M\). \(\square\)
Preliminaries on Lorentzian Geometry
Basic Definitions:
Preliminaries

Basic Definitions:

- A *spacetime* is a pair (M, g) with

 \[
 \begin{cases}
 M & \text{smooth manifold} \\
 g & \text{metric tensor of index 1.}
 \end{cases}
 \]
Basic Definitions:

- A *spacetime* is a pair (M, g) with
 \[M \text{ smooth manifold} \]
 \[g \text{ metric tensor of index 1.} \]

- Tangent space: $v \in T_p M$ is
 \[\text{timelike if } g(v, v) < 0 \]
 \[\text{lightlike if } g(v, v) = 0 \]
 \[\text{spacelike if } g(v, v) > 0, \quad v = 0. \]
Preliminaries

Basic Definitions:

- A spacetime is a pair \((M, g)\) with \(M\) smooth manifold and \(g\) metric tensor of index 1.

- Tangent space: \(v \in T_pM\) is \(\text{timelike if } g(v, v) < 0\) and \(\text{lightlike if } g(v, v) = 0\).
Basic Definitions:

- A spacetime is a pair \((M, g)\) with \(M\) smooth manifold

- Tangent space: \(v \in T_pM\) is

\[
\begin{align*}
\text{timelike} \text{ if } & \quad g(v, v) < 0 \\
\text{lightlike} \text{ if } & \quad g(v, v) = 0 \\
\text{causal} \text{ if } & \quad g(v, v) \leq 0.
\end{align*}
\]
Basic Definitions:

- A spacetime is a pair (M, g) with
 \[\begin{cases}
 M & \text{smooth manifold} \\
 g & \text{metric tensor of index } 1.
 \end{cases} \]

- Tangent space: $v \in T_p M$ is
timelike if $g(v, v) < 0$
causal if $g(v, v) \leq 0$.

- A smooth curve $\gamma : I \rightarrow M$ is
timelike if so is $\dot{\gamma}(s) \forall s$
causal if so is $\dot{\gamma}(s) \forall s$.
Basic Definitions:

- A spacetime is a pair \((M, g)\) with \(M\) smooth manifold and \(g\) metric tensor of index 1.

- Tangent space: \(v \in T_pM\) is timelike if \(g(v, v) < 0\) and causal if \(g(v, v) \leq 0\).

- A smooth curve \(\gamma : I \rightarrow M\) is timelike if so is \(\dot{\gamma}(s) \forall s\) and causal if so is \(\dot{\gamma}(s) \forall s\).

- Spacetimes are assumed time-oriented, i.e. they are endowed with a continuous, globally defined, timelike vector field \(X\).
Causal vector $v \in T_p M$ is

\[
\begin{align*}
\text{future-directed if } &\ g(v, X(p)) < 0 \\
\text{past-directed if } &\ g(v, X(p)) > 0.
\end{align*}
\]
Causal vector $v \in T_p M$ is
\[
\begin{cases}
\text{future-directed if } & g(v, X(p)) < 0 \\
\text{past-directed if } & g(v, X(p)) > 0.
\end{cases}
\]

Causal tangent vectors $v \in T_p M$ are distributed in two cones, the future and the past one.
Causal vector $v \in T_p M$ is
\[
\begin{cases}
\text{future-directed if} & \quad g(v, X(p)) < 0 \\
\text{past-directed if} & \quad g(v, X(p)) > 0.
\end{cases}
\]

Causal tangent vectors $v \in T_p M$ are distributed in two cones, the future and the past one.

A causal curve $\gamma(s)$ is
\[
\begin{cases}
\text{future-directed if so is} & \quad \dot{\gamma}(s) \forall s \\
\text{past-directed if so is} & \quad \dot{\gamma}(s) \forall s.
\end{cases}
\]
Causal vector $v \in T_p M$ is

\[
\begin{align*}
\text{future-directed} & \text{ if } g(v, X(p)) < 0 \\
\text{past-directed} & \text{ if } g(v, X(p)) > 0.
\end{align*}
\]

Causal tangent vectors $v \in T_p M$ are distributed in two cones, the future and the past one.

A causal curve $\gamma(s)$ is

\[
\begin{align*}
\text{future-directed} & \text{ if so is } \dot{\gamma}(s) \forall s \\
\text{past-directed} & \text{ if so is } \dot{\gamma}(s) \forall s.
\end{align*}
\]

Future-directed causal curves represent all the physically admissible trajectories for material particles and light rays in the universe.
Preliminaries

Causal Structure:
Causal Structure:

- q, p chronologically related, $q \ll p$, if they can be joined by a future timelike curve.

- *Chronological past of* p, $I^-(p)$, *is the set of events* q *which are chronologically related to* p, $q \ll p$ (*analogous for* $I^+(p)$).
Causal Structure:

- \(q, p\) chronologically related, \(q \ll p\), if they can be joined by a future timelike curve.

- Chronological past of \(p\), \(I^-(p)\), is the set of events \(q\) which are chronologically related to \(p\), \(q \ll p\) (analogous for \(I^+(p)\)).

- \(q, p\) causally related, \(q \leq p\), if they can be joined by a future causal curve.

- Causal past of \(p\), \(J^-(p)\), is the set of events \(q\) which are causally related to \(p\), \(q \leq p\) (analogous for \(J^+(p)\)).
Preliminaries

Causal Structure:

- q, pChronologically related, $q \ll p$, if they can be joined by a future timelike curve.

- **Chronological past of** p, $I^-(p)$, *is the set of events* q *which are chronologically related to* p, $q \ll p$ (analogous for $I^+(p)$).

- q, p Causally related, $q \leq p$, if they can be joined by a future causal curve.

- **Causal past of** p, $J^-(p)$, *is the set of events* q *which are causally related to* p, $q \leq p$ (analogous for $J^+(p)$).

- The chronological (resp. causal) past/future of p defined w.r.t. an open set $U \subset M$ will be denoted by $I^{\pm}(p, U)$ (resp. $J^{\pm}(p, U)$).
Preliminaries

Some Global Causality Conditions:
Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
Preliminaries

Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
- A spacetime is *strongly causal* if it does not admit neither closed nor “almost closed” causal curves.
Preliminaries

Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
- A spacetime is *strongly causal* if it does not admit neither closed nor “almost closed” causal curves, i.e. for every \(p \in V \), there exists some neighborhood \(p \in U \subset V \) such that any causal curve with extremes inside \(U \) is totally contained in \(V \).
Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
- A spacetime is *strongly causal* if it does not admit neither closed nor “almost closed” causal curves.
- A spacetime is *globally hyperbolic* if it is strongly causal and $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$.
Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
- A spacetime is *strongly causal* if it does not admit neither closed nor “almost closed” causal curves.
- A spacetime is *globally hyperbolic* if it is strongly causal and $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$.

\iff it admits a *Cauchy hypersurface*: a topological hypersurface that is met exactly once by every inextensible timelike curve.
Some Global Causality Conditions:

- A spacetime is *chronological* if it does not admit closed timelike curves.
- A spacetime is *causal* if it does not admit closed causal curves.
- A spacetime is *strongly causal* if it does not admit neither closed nor “almost closed” causal curves.
- A spacetime is *globally hyperbolic* if it is strongly causal and $J^+(p) \cap J^-(q)$ is compact for any $p, q \in M$.

$$\Rightarrow \ (M, g) \text{ splits isometrically as } (\mathbb{R} \times S, -\beta dt^2 + g_t).$$
Further Definitions:
Further Definitions:

- A subset $A \subset M$ is *achronal* (resp. *acausal*) if it does not contain points chronologically (causally) related between them.
Further Definitions:

- A subset $A \subset M$ is achronal (resp. acausal) if it does not contain points chronologically (causally) related between them.

- The edge of an achronal set $A \subset M$ is the set of points $p \in \overline{A}$ satisfying that every neighborhood U of p contains a timelike curve from $I^-(p, U)$ to $I^+(p, U)$ which does not meet A.
Further Definitions:

- A subset $A \subseteq M$ is *achronal* (resp. *acausal*) if it does not contain points chronologically (causally) related between them.

- The *edge* of an achronal set $A \subseteq M$ is the set of points $p \in \overline{A}$ satisfying that every neighborhood U of p contains a timelike curve from $I^-(p, U)$ to $I^+(p, U)$ which does not meet A.

Properties:

1. $\overline{A} \setminus A \subseteq \text{edge}(A)$.
2. A achronal is a topological hypersurface iff $A \cap \text{edge}(A) = \emptyset$.
3. A achronal is a closed topological hypersurface iff $\text{edge}(A) = \emptyset$.
Preliminaries

Some Distinguished Hypersurfaces:
Some Distinguished Hypersurfaces:

- A (smooth) spacelike hypersurface is a smooth codimension one submanifold with everywhere timelike normal. It is maximal if the mean curvature vanishes identically.
Some Distinguished Hypersurfaces:

- A (smooth) spacelike hypersurface is a smooth codimension one submanifold with everywhere timelike normal. It is maximal if the mean curvature vanishes identically.

- A subset \(S \subset M \) is a topological spacelike hypersurface if for each \(p \in S \), there exists a neighborhood \(U \) of \(p \) in \(M \) such that \(S \cap U \) is acausal and edgeless in \((U, g|_U)\).
Some Distinguished Hypersurfaces:

- A (smooth) spacelike hypersurface is a smooth codimension one submanifold with everywhere timelike normal. It is maximal if the mean curvature vanishes identically.
- A subset $S \subset M$ is a topological spacelike hypersurface if for each $p \in S$, there exists a neighborhood U of p in M such that $S \cap U$ is acausal and edgeless in $(U, g |_U)$.
- A subset S of M is a partial Cauchy hypersurface if S is acausal and edgeless in M.

Preliminaries
Some Distinguished Hypersurfaces:

- A (smooth) spacelike hypersurface is a smooth codimension one submanifold with everywhere timelike normal. It is maximal if the mean curvature vanishes identically.

- A subset $S \subset M$ is a topological spacelike hypersurface if for each $p \in S$, there exists a neighborhood U of p in M such that $S \cap U$ is acausal and edgeless in $(U, g|_U)$.

- A subset S of M is a partial Cauchy hypersurface if S is acausal and edgeless in M.

\Rightarrow S is a closed topological spacelike hypersurface.
Temporal Separation/Lorentzian Distance:

\[d(p, q) = \begin{cases}
0, & \text{if } C_{pq}^c = \emptyset \\
\sup \{ L(\alpha) = \int \sqrt{-g(\dot{\alpha}, \dot{\alpha})}, \alpha \in C_{pq}^c \}, & \text{if } C_{pq}^c \neq \emptyset.
\end{cases} \]
Temporal Separation/Lorentzian Distance:

\[d(p, q) = \begin{cases}
0, & \text{if } C^c_{pq} = \emptyset \\
\sup\{ L(\alpha) = \int \sqrt{-g(\dot{\alpha}, \dot{\alpha})}, \alpha \in C^c_{pq} \}, & \text{if } C^c_{pq} \neq \emptyset.
\end{cases} \]

Properties:

1. \(d(p, q) > 0 \iff p \in I^-(q) \iff q \in I^+(p) \).
2. \(d(p, p) = \infty \) if \(\exists \) piecewise smooth timelike curve joining \(p \) to itself; otherwise, \(d(p, p) = 0 \).
3. If \(0 < d(p, q) < \infty \) then \(d(q, p) = 0 \); hence, \(d \) is not symmetric.
4. If \(p \leq q \leq r \) then \(d(p, q) + d(q, r) \leq d(p, r) \) (Reverse T.I.).
5. In general, d is not continuous, but only lower semicontinuous, i.e. if $\{p_m\} \rightarrow p$ and $\{q_m\} \rightarrow q$ then

$$\lim_{m} \inf d(p_m, q_m) \geq d(p, q).$$
5. In general, \(d \) is not continuous, but only lower semicontinuous, i.e. if \(\{p_m\} \to p \) and \(\{q_m\} \to q \) then

\[
\liminf_m d(p_m, q_m) \geq d(p, q).
\]

Lorentzian Distance and Global Hyperbolicity:

6. If \((M, g)\) is globally hyperbolic and \(p \leq q \) then there exists some maximal geodesic joining \(p \) to \(q \) (Avez-Seifert).

7. If \((M, g)\) is globally hyperbolic, \(d \) is continuous and finite valued.
Busemann Function:
Preliminaries

Busemann Function:

A timelike ray is a unitary timelike geodesic $\gamma : [0, \infty) \rightarrow M$ which realizes the distance between any two of its points.
Busemann Function:

- A timelike ray is a unitary timelike geodesic $\gamma : [0, \infty) \to M$ which realizes the distance between any two of its points.

- The Busemann function $b : I[\gamma] \to \mathbb{R}$, $I[\gamma] = I^+(\gamma(0)) \cap I^-[\gamma]$, associated to a ray γ defined below always exists:

\[
b_\gamma(\cdot) := \lim_{{r \to \infty}} (r - d(\cdot, \gamma(r)))
\]
Preliminaries

Busemann Function:

- A timelike ray is a unitary timelike geodesic \(\gamma : [0, \infty) \rightarrow M \) which realizes the distance between any two of its points.

- The Busemann function \(b : I[\gamma] \rightarrow \mathbb{R}, I[\gamma] = I^+(\gamma(0)) \cap I^-[\gamma], \) associated to a ray \(\gamma \) defined below always exists:

\[
b_\gamma(\cdot) := \lim_{r \rightarrow \infty} (r - d(\cdot, \gamma(r)))
\]

- Busemann function may be \(-\infty\) and discontinuous.
Busemann Function:

- A *timelike ray* is a unitary timelike geodesic $\gamma : [0, \infty) \to M$ which realizes the distance between any two of its points.

- The *Busemann function* $b : I[\gamma] \to \mathbb{R}$, $I[\gamma] = I^+(\gamma(0)) \cap I^-[\gamma]$, associated to a ray γ defined below always exists:

 $$b_\gamma(\cdot) := \lim_{r \to \infty} (r - d(\cdot, \gamma(r)))$$

- Busemann function may be $-\infty$ and discontinuous.

- From the RTI, one derives $b(q) \geq b(p) + d(p, q)$, $\forall p, q \in I[\gamma], p \leq q$.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.92/145
Busemann Function:

- A *timelike ray* is a unitary timelike geodesic \(\gamma : [0, \infty) \to M \) which realizes the distance between any two of its points.

- The *Busemann function* \(b : I[\gamma] \to \mathbb{R}, I[\gamma] = I^+ (\gamma(0)) \cap I^- [\gamma], \) associated to a ray \(\gamma \) defined below always exists:

 \[
 b_\gamma (\cdot) := \lim_{r \to \infty} (r - d (\cdot, \gamma (r)))
 \]

- Busemann function may be \(-\infty\) and discontinuous.

- From the RTI, one derives \(b (q) \geq b (p) + d (p, q), \forall p, q \in I[\gamma], \) \(p \leq q. \)

- The level sets \(\{ b = c \} \) are achronal in \(I[\gamma]. \)
Preliminaries

Asymptotes:
Asymptotes:

An asymptote to γ from $p \in I[\gamma]$ is a ray $\alpha : [0, \infty) \to M$ which arises as limit of maximal timelike geodesic segments from p to $\gamma(r_n)$.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.95/145
Asymptotes:

- An *asymptote* to γ from $p \in I[\gamma]$ is a ray $\alpha : [0, \infty) \rightarrow M$ which arises as limit of maximal timelike geodesic segments from p to $\gamma(r_n)$.

- Asymptotes need not be timelike nor unique.
Asymptotes:

- An asymptote to γ from $p \in I[\gamma]$ is a ray $\alpha : [0, \infty) \to M$ which arises as limit of maximal timelike geodesic segments from p to $\gamma(r_n)$.
- Asymptotes need not be timelike nor unique.
- Assume $\alpha : [0, \infty) \to M$ is an asymptote to γ. Using RTI, one derives:

 $$b(\alpha(t)) = t + b(\alpha(0)) \quad \forall t \in [0, \infty).$$
Lorentzian Splitting Theorem
Lorentzian Splitting Theorem

In 1982, Yau posed the problem of obtaining the Lorentzian analogue of the Cheeger-Gromoll Splitting theorem:

Yau’s Conjecture: (Ann. Math Studies, 102, Princeton, 1982)

Suppose that the spacetime (M, g), of dimension $n > 2$, satisfies the following conditions:

1. (M, g) is timelike geodesically complete,
2. $\text{Ric}(v, v) \geq 0$ for all timelike $v \in TM$,
3. M has a timelike line.

Then M splits isometrically as $(M, g) \cong (\mathbb{R} \times M_1, -dt^2 \oplus g_1)$, where (M_1, g_1) is a complete Riemannian manifold.
History of the Problem

- This conjecture has involved multiple leading authors: Beem, Ehrlich, Markovsen, Galloway, Eschenburg, Newman...
History of the Problem

This conjecture has involved multiple leading authors: Beem, Ehrlich, Markovsen, Galloway, Eschenburg, Newman...

In 1984 Galloway solved the problem for the spatially closed case, under some additional hypotheses. Concretely:

Let \((M, g)\) be a spacetime which contains a compact Cauchy surface and which satisfies the timelike convergence condition. Assume \((M, g)\) contains a past and future complete timelike curve. If for each \(p \in M\) all null geodesics through \(p\) enter \(I^+(p)\) and \(I^-(p)\), then \(M\) is isometric to a product \(\mathbb{R} \times S\).

He applied maximal surfaces techniques from results in Gerhardt’83, Bartnik’84.
Afterwards Beem, Ehrlich, Markovsen and Galloway solved the problem by assuming global hyperbolicity instead of timelike geodesic completeness, and inequality $K \leq 0$ instead of $Ric \geq 0$.

Global hyperbolicity is not a big restriction, and, in certain sense, is more natural condition than timelike geodesic completeness.

The sectional curvature inequality is significatively more restrictive than that of Ricci curvature, and does not admit a clear physical interpretation.

This curvature hypothesis is assumed in order to apply a Lorentzian adaptation of the Topogonov’s argument, via de Harris’ Lorentzian Triangle Comparison Theorem (1982).
History of the Problem

- By the same year, Eschenburg and Heintze gave their alternative proof for the Cheeger-Gromoll Riemannian Splitting Theorem, providing a helpful model for spacetimes.
History of the Problem

- By the same year, Eschenburg and Heintze gave their alternative proof for the Cheeger-Gromoll Riemannian Splitting Theorem, providing a helpful model for spacetimes.

- In 1988, Eschenburg solved the problem for $\text{Ric} \geq 0$, by assuming both, global hyperbolicity and timelike completeness.

It is a direct translation to the Lorentzian case of the Eschenburg and Heintze’s arguments.

The key point was the observation that the geometry of a neighborhood of the timelike line allows certain arguments to be successfully modified from $K \leq 0$ to $\text{Ric} \geq 0$.
In 1989, Galloway removed the assumption of timelike completeness from Eschenburg’s work. He applied a result on the existence of maximal spacelike hypersurfaces due to Bartnik (1988).

This result provided a more natural and powerful approach to the key step in Eschenburg’s result, making redundant the timelike geodesic completeness hypothesis.
History of the Problem

- In 1990 Newman obtained a proof assuming timelike completeness instead of global hyperbolicity, and thus, solved the Yau’s Conjecture.

New techniques are not introduced, just adaptations of the previous ones in order to carefully study the behavior of an arbitrary spacetime in a tubular neighborhood of a timelike line.

He employed Galloway’s maximal surfaces techniques for the sake of completeness.
All these results may be summarized in the following simple statement of the Lorentzian Splitting Theorem (containing Yau’s Conjecture):

Theorem (Lorentzian Splitting):

Suppose that the spacetime \((M, g)\), of dimension \(n > 2\), satisfies the following conditions:

1. \((M, g)\) is either globally hyperbolic or timelike complete,
2. \(\text{Ric}(v, v) \geq 0\) for all timelike \(v \in TM\),
3. \(M\) has a timelike line.

Then \(M\) splits isometrically as \((M, g) \cong (\mathbb{R} \times M_1, -dt^2 \oplus g_1)\), where \((M_1, g_1)\) is a complete Riemannian manifold.
History of the Problem

For simplicity reasons, we will study the following version of the Lorentzian Splitting Theorem:

Theorem (Lorentzian Splitting):

Suppose that the spacetime \((M, g)\), of dimension \(n > 2\), satisfies the following conditions:

1. \((M, g)\) is globally hyperbolic and timelike complete,
2. \(\text{Ric}(v, v) \geq 0\) for all timelike \(v \in TM\),
3. \(M\) has a timelike line.

Then \(M\) splits isometrically as \((M, g) \cong (\mathbb{R} \times M_1, -dt^2 \oplus g_1)\), where \((M_1, g_1)\) is a complete Riemannian manifold.
Previous Technical Results
The first lemma is a convexity result which states the super-harmonic character of Lorentian Busemann functions whenever they are smooth:

Lemma:

Assume M obeys $\text{Ric}(v, v) \geq 0$ for all timelike $v \in TM$. Let b be the Busemann function associated to a ray γ. If b is smooth on an open set $U \subset I[\gamma]$ with unit timelike gradient then $\Delta b \leq 0$ on U.
The first lemma is a convexity result which states the super-harmonic character of Lorentian Busemann functions whenever they are smooth:

Lemma:

Assume M obeys $\text{Ric}(v, v) \geq 0$ for all timelike $v \in TM$. Let b be the Busemann function associated to a ray γ. If b is smooth on an open set $U \subset I[\gamma]$ with unit timelike gradient then $\Delta b \leq 0$ on U.

Proof:

- Assume by contradiction $\Delta b(p) = H > 0$ for some $p \in U$.
- Denote $\Sigma := \{b = c\} \cap U_0$, $c = b(p)$, U_0 certain neighborhood.
- Since $b_r \downarrow b$, it is $\Sigma \subset \{b_r \geq c\}$ for all $r \geq r_0$.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.111/145
- Since ∇b is past-directed and unitary, the mean curvature of Σ becomes $H_\Sigma = \Delta b$ along Σ.

- Choose some $q \in I^+(p) \cap U_0$ close enough to p so that $H_\Sigma(x) \geq H/2$ for all $x \in \Sigma \cap I^-(q)$.

- Let Σ' be a smooth spacelike hypersurface resulting from a small deformation of Σ around p such that:

 (i) $A = \Sigma' \setminus \Sigma \subset I^-(q)$.

 (ii) $A \cap I^-(p) \neq \emptyset$.

 (iii) $H_{\Sigma'}(x) \geq H/3$ for all $x \in A$.

- Since $b_r(p) \setminus c, A$ meets $\{b_r < c\}$ for all sufficiently large r.
Thus, for such r, $b_r \mid_{\Sigma'}$ achieves an inferior minimum $c' < c$ at some point $z \in A$, and hence $\Sigma' \subset \{b_r \geq c'\}$.

- Define the function $\beta_r : I^- (y_r) \to \mathbb{R}$ by

$$
\beta_r(x) = r - \left(\frac{r - c'}{2} + d(x, y_r)\right),
$$

where $y_r = \eta_r \left(\frac{r-c'}{2}\right)$ and $\eta_r : [0, r - c'] \to M$ is maximal geodesic segment from z to $\gamma(r)$.

- Near z, the level set $\Sigma_r = \{\beta_r = c'\}$ is smooth spacelike hypers. which meets Σ' tangentially at z, and lies to the past of Σ'.

- Therefore, from the Maximum Principle

$$
H_{\Sigma_r}(z) \geq H_{\Sigma'}(z) \geq H/3 > 0. \quad (1)
$$
- On the other hand, from the nonnegative Ricci hypothesis the basic estimate \(\Delta d_q \geq - (n - 1)/d_q \) holds.

- This provides the estimate:

\[
H_{\Sigma_r}(z) < 2(n - 1)/(r - c). \tag{2}
\]

- The contradiction is obtained from (1), (2) by taking \(r \to \infty \). \(\square \)
Nice neighborhoods:

An open set $U \subset I[\gamma]$ is said to be nice (with respect to γ) if there exist constants $K > 0$ and $T > 0$ such that for each $q \in U$ and $r > T$, any maximal unit speed geodesic segment σ from q to $\gamma(r)$ satisfies

$$g_0(\sigma'(0), \sigma'(0)) \leq K,$$

g_0 fixed Riemannian metric.
Nice neighborhoods:
An open set $U \subset I[\gamma]$ is said to be nice (with respect to γ) if there exist constants $K > 0$ and $T > 0$ such that for each $q \in U$ and $r > T$, any maximal unit speed geodesic segment σ from q to $\gamma(r)$ satisfies

$$g_0(\sigma'(0), \sigma'(0)) \leq K, \quad g_0 \text{ fixed Riemannian metric.}$$

Properties:
1. For each t, $\gamma(t)$ is contained in a nice neighborhood.
2. Asymptotes to γ from points in nice neighborhoods are timelike.
3. $\{b_r\}$ converges locally uniformly to b on nice neighborhoods.
 Hence b is continuous on nice neighborhoods.
Level sets of Busemann functions present a nice structure in nice neighborhoods:

Lemma:

The level set $\Sigma_c = \{b = c\}$ of a Busemann function b is a partial Cauchy surface at any nice neighborhood U.

Proof:

- To prove that Σ_c is edgeless, assume by contradiction that $p \in \text{edge}(\Sigma_c) \neq \emptyset$.
- There exists a timelike curve in U which goes from $I^-(p, U)$ to $I^+(p, U)$ and does not meet Σ_c.
- Hence, b does not take the value c along that curve.
- This contradicts the continuity of \(b \), since \(b \) takes values smaller and greater than \(c \) at the extremes of the curve.

- In order to show that \(\Sigma_c \) is acausal, we already know that it is achronal.

- By contradiction, assume that \(\Sigma_c \) is not acausal.

- Then, there exists \(p, q \in \Sigma_c \), \(p \preceq q \), \(p \not\ll q \).

- From Avez-Seifert’s result, there exists a null geodesic \(\eta \) connecting \(p, q \).

- Let \(\{\alpha_n\}_n \) be a sequence of maximal timelike segments connecting \(q \) with \(\gamma(r_n) \) and let \(\alpha \) be a limit timelike geodesic.
- Let $\eta \cdot \alpha_n$ be the resulting curve from cutting the corner to the convolution $\eta \cdot \alpha_n$.

- By making the cuts of the curves appropriately (by comparing them with the corner of $\eta \cdot \alpha$), we deduce

$$d(p, \gamma(r_n)) \geq \text{length}(\eta \cdot \alpha_n) \geq \text{length}(\alpha_n) + \epsilon = d(q, \gamma(r_n)) + \epsilon.$$

- In particular,

$$b_{r_n}(q) - b_{r_n}(p) = d(p, \gamma(r_n)) - d(q, \gamma(r_n)) \geq \epsilon,$$

and so, $b(q) - b(p) \geq \epsilon$, in contradiction with $b(p) = b(q) = c.$ \Box
Previous Technical Results

A second convexity result is needed for the proof:

Lemma:

Assume M obeys $Ric(v, v) \geq 0$ for all v timelike. Let Σ be a connected smooth spacelike hypersurface contained in a “sufficiently small” nice neighborhood of $\gamma(t)$. Assume the mean curvature of Σ is nonnegative, $H_\Sigma \geq 0$. If b achieves a minimum along Σ then b is constant along Σ.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.120/145
A second convexity result is needed for the proof:

Lemma:

Assume M obeys $Ric(v, v) \geq 0$ for all v timelike. Let Σ be a connected smooth spacelike hypersurface contained in a “sufficiently small” nice neighborhood of $\gamma(t)$. Assume the mean curvature of Σ is nonnegative, $H_\Sigma \geq 0$. If b achieves a minimum along Σ then b is constant along Σ.

Proof:

- By connectivity, it suffices to prove that b is constant in a neighborhood of the minimum q.

- Assume by contradiction that b is not constant in any neighborhood of q.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.121/145
- Let B open coordinate ball $B \subset \Sigma$ centered at q such that $b \mid_{\partial B}$ is not constantly equal to the minimum value.

- Choosing B small enough we can construct a smooth function h on Σ such that:

 (i) $h(q) = 0$

 (ii) $|\nabla_{\Sigma} h| \leq 1$ on B, with ∇_{Σ} is the gradient operator on Σ,

 (iii) $\Delta_{\Sigma} h \leq -D$ on B, where D is a positive constant and Δ_{Σ} is the induced Laplacian on Σ, and

 (iv) $h > 0$ on $\partial^0 B = \{x \in \partial B : b(x) = b(q)\}$.

- Define $\beta_{p,r}(x) = r - (l/2 + d(x, y_r))$, where $y_r = \eta_r(l/2)$ and $\eta_r : [0, l] \to M$ is maximal geodesic segment from p to $\gamma(r)$.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.122/145
- There exists some \(p \in B \), such that the function \(\varphi_{\epsilon,r} := \beta_{p,r} + \epsilon h \) is smooth in a neighborhood of \(p \), and achieves a minimum at \(p \).

- On the other hand, by using the timelike convergence condition, and the mean curvature assumption, it can be proved the following upper estimate:

\[
\Delta_{\Sigma} \varphi_{\epsilon,r}(p) \leq \frac{2(n-1)}{(r-r_0)} + C\epsilon^2 - D\epsilon.
\]

- For \(\epsilon \) small and \(r \) large, one has \(\Delta_{\epsilon} \varphi_{\epsilon,r}(p) < 0 \).

- This contradicts the fact that \(\varphi_{\epsilon,r} \) achieves a minimum at \(p \). \(\square \)
Corollary:

Let Σ be a smooth maximal spacelike hypersurface whose closure is contained in a sufficiently small nice neighborhood U of $\gamma(t)$. Assume Σ is achronal in U and $\overline{\Sigma}$ is compact. If $\text{edge}(\Sigma) \subset \{b \geq c\}$, then $\Sigma \subset \{b \geq c\}$.

Proof:

- Otherwise, b achieves a minimum value $c' < c$.
- From previous lemma, $b \equiv c'$, in contradiction with $\text{edge}(\Sigma) \subset \{b \geq c\}$. \square
Proof of Splitting Theorem
Sketch of Proof

Step 1: Existence of smooth spacelike hypersurface Σ with $b_\pm |_{\Sigma} = 0$.

Step 2: There is a line α with $b_\pm (\alpha(t)) = \pm t$, for every point in Σ.

Step 3: Every line α is normal to B.

Step 4: $E : U = \mathbb{R} \times B \rightarrow E(U)$, $E(t, q) = \exp t N_q$ diffeomorphism.

Step 5: $E : U \rightarrow E(U)$ is an isometry (Local Splitting).

Step 6: From Local to the Global Splitting.
Proof of Splitting Theorem

Step 1: Existence of smooth spacelike hypersurface Σ with $b_\pm |_\Sigma = 0$.

- Let γ be the timelike line ensured by the hypotheses of the theorem. By applying the RTI:

 $$b_+ + b_- \geq 0 \text{ on } I[\gamma], \quad b_+ + b_- \equiv 0 \text{ on } \gamma.$$

- Denote $S^\pm = \{b_\pm = 0\} \cap U$, with U a nice neighborhood for γ_\pm.

- From a previous lemma, S^+ is a partial Cauchy surface in U; hence, it is an embedded topological spacelike hypersurface.

- Let W small coord. ball in S^+ centered at $\gamma(0)$, with $\overline{W} \subset S^+$.

- Bartnik’88: \exists solution to the Dirichlet problem for maximal hypersurfaces with contour in a topological spacelike surface.
Proof of Splitting Theorem

Step 1: Existence of smooth spacelike hypersurface Σ with $b_\pm \mid_\Sigma = 0$.

- Let γ be the timelike line ensured by the hypotheses of the theorem. By applying the RTI:

 $$ b_+ + b_- \geq 0 \text{ on } I[\gamma], \quad b_+ + b_- \equiv 0 \text{ on } \gamma. $$

- Denote $S^{\pm} = \{b_\pm = 0\} \cap U$, with U a nice neighborhood for γ_{\pm}.

- From a previous lemma, S^+ is a partial Cauchy surface in U; hence, it is an embedded topological spacelike hypersurface.

- Let W small coord. ball in S^+ centered at $\gamma(0)$, with $\overline{W} \subset S^+$.

- Bartnik’88 $\Rightarrow \exists$ smooth maximal spacelike hypersurface Σ which is achronal in U, $\overline{\Sigma}$ compact, $\text{edge}(\Sigma) = \text{edge}(W)$ and Σ meets γ.
In particular, $\text{edge}(\Sigma) \subset \{b_+ \geq 0\} \cap \{b_- \geq 0\}$.

From previous Corollary, $\Sigma \subset \{b_+ \geq 0\} \cap \{b_- \geq 0\}$.

Therefore, $b_\pm = 0$ where Σ meets γ, which must be $\gamma(0)$.

Since $b_+(\gamma(0)) = b_-(\gamma(0)) = 0$, the second convexity lemma implies $b_+ = b_- = 0$ on Σ.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.129/145
Proof of Splitting Theorem

Step 2: There is a line α with $b_\pm(\alpha(t)) = \pm t$, for every point in Σ.

- Let $B \subset \Sigma$ a geodesic ball in Σ centered at $\gamma(0)$ of radius R.
- From each point of B, \exists timelike asymptotes α_\pm to γ_\pm, resp.
- Let $\alpha : \mathbb{R} \to M$ the (possibly) broken geodesic given by:

\[
\alpha(t) = \begin{cases}
\alpha_-(t) & -\infty < t \leq 0 \\
\alpha_+(t) & 0 \leq t < \infty.
\end{cases}
\]

- Since α_\pm are asymptotes to γ_\pm, and $b_\pm \mid_{\Sigma} = 0$, we have:

\[
b_+(\alpha_+(t)) = b_+(\alpha_+(0)) + t = t \quad \text{if } t \geq 0.
\]

\[
b_-(\alpha_-(t)) = b_-(\alpha_-(0)) + t = t
\]
Proof of Splitting Theorem

- Then:

\[t = b_+(\alpha_+(t)) \geq b_+(\alpha_-(t)) + d(\alpha_-(t), \alpha_+(t)) \geq b_+(\alpha_-(t)) + 2t, \]

and thus,

\[b_+(\alpha_-(t)) \leq -t, \quad \text{if } t \geq 0. \]

- Notice also that:

\[0 \leq b_+(\alpha_-(t)) + b_-(\alpha_-(t)) \leq -t + t = 0; \]

hence,

\[b_+(\alpha_-(t)) = -b_-(\alpha_-(t)) = -t, \quad \text{if } t \geq 0. \]
Proof of Splitting Theorem

- Summarizing:

\[b_+(\alpha(t)) = b_+(\alpha_+(t)) = t \quad \text{if } t \geq 0 \]
\[b_+(\alpha(t)) = b_+(\alpha_-(t)) = -(t) = t \quad \text{if } t \leq 0. \]

- The expression \(b_-(\alpha(t)) = -t \) is deduced similarly.

- Finally, \(\alpha \) must be a line, since

\[\text{length}(\alpha \mid_{[t_1,t_2]}) = t_2 - t_1 = b_+(\alpha(t_2)) - b_+(\alpha(t_1)) \geq d(\alpha(t_1), \alpha(t_2)) \]

and thus,

\[\text{length}(\alpha \mid_{[t_1,t_2]}) = d(\alpha(t_1), \alpha(t_2)). \]
Step 3: Every line α is normal to B.

- From inequality $b(q) \geq b(p) + d(p, q)$ we deduce that function
 \[b_{q,r}^+(x) = r - d(x, \alpha(r)) \]
 is an upper support function of b_+ at $q = \alpha(0)$ for $r > 0$.

- Analogously, $b_{q,r}^-(x) = -r + d(\alpha(-r), x)$ is a lower support function of b_+ at $q = \alpha(0)$ for $r > 0$.

- Therefore, b_+ is differentiable at q, and $\nabla b_+(q) = -\dot{\alpha}(0)$.
 (Similar argument proves that $\nabla b_+(\alpha(t)) = -\dot{\alpha}(t)$.)

- Since $\nabla b_+(q)$ is normal to B, also is the line α.
Proof of Splitting Theorem

Step 4: $E : U = \mathbb{R} \times B \rightarrow E(U), E(t, q) = \exp tN_q$ diffeomorphism.

E is injective:

- E is injective iff normal geodesics to B do not intersect.
- Future normal geodesics from B are asymptotes to γ_+.
- But recall that asymptotes α to γ_+ satisfy $\nabla b_+(\alpha(t)) = -\dot{\alpha}(t)$. Thus, asymptotes at different points of B do not intersect.
- Similarly, past normal geodesics from B do not intersect.
- Finally, future and past normal geodesics cannot intersect between them because, otherwise, they would violate the achronality of $\Sigma \subset \{b_+ = 0\}$.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.134/145
Proof of Splitting Theorem

E is nonsingular:

- Assume by contradiction that E is singular.

- Let $\alpha(a)$, $a > 0$, be the first focal point to $p \in B$ along α.

- $\exists V \subset \mathbb{R} \times B$ of $[0, a) \times \{p\}$ s.t. $E : V \to V'$ is diffeomorphism. In particular, $b_+(\exp tN_q) = t$ on V.

- Hence, b_+ is smooth on V, and $\Delta b_+ = H_{\Sigma_t}$, $\Sigma_t = \{b_+ = t\} \cap V$.

- On the one hand, from the first convexity result we have $H_{\Sigma_t} = \Delta b_+ \leq 0$ along $\alpha \mid_{[0,a]}$.

- On the other hand, since $\alpha(a)$ focal point, $\limsup_{t \to a} H_{\Sigma_t} = \infty$, a contradiction.
Proof of Splitting Theorem

Step 5: \(E : U \rightarrow E(U) \) is an isometry (Local Splitting).

- Recall that \(b_{\pm}(\exp tN_q) = \pm t \). In particular, \(b_{\pm} \) is smooth.
- From the first convexity result, \(\Delta b_{\pm} \leq 0 \) on \(U \).
- This inequality joined to \(b_+ = -b_- \) implies \(\Delta b_+ = 0 \) on \(U \).
- Next, consider the well-known formula:

\[
-\nabla b_+ (\Delta b_+) = \text{Ric}(\nabla b_+, \nabla b_+) + |\text{Hess} b_+|^2,
\]

\((\nabla b_+ \) unit past vector field tangent to the normal geodesic to \(B \)).
- Since \(\Delta b_+ = 0 \) and \(\text{Ric}(\nabla b_+, \nabla b_+) \geq 0 \), it is \(\text{Hess} b_+ = 0 \) on \(U \).
- Hence, \(\nabla b_+ \) is parallel on \(U \), and thus, \(E \) is an isometry.
Proof of Splitting Theorem

Step 6: From Local to the Global Splitting.

* A flat strip is a totally geodesic isometric immersion f of $(\mathbb{R} \times I, -dt^2 + ds^2)$ into M such that $f \mid_{\mathbb{R} \times \{s\}}$ is line $\forall s \in I$.

* Two lines γ_1, γ_2 are strongly parallel if they bound a flat strip.

* Two lines γ_1, γ_2 are parallel if \exists lines $\gamma_1 = \beta_0, \beta_1, \ldots, \beta_k = \gamma_2$ which are strongly parallel.

- If γ_1, γ_2 are parallel lines then $I[\gamma_1] = I[\gamma_2]$ and the Busemann functions b^\pm_1, b^\pm_2 agree.

- Denote by $P_\gamma \subset M$ the set of points which lie on a line which is parallel to γ.

The Splitting Problem in Riemannian and Lorentzian Geometry – p.137/145
Proof of Splitting Theorem

- b_+ is differentiable at P_γ and there exists exactly one parallel line γ_q passing through any $q \in P_\gamma$.

- From the local splitting, we have:

 (i) P_γ is open.

 (ii) P_γ is closed.

 (For any geodesic $c : [0, 1] \rightarrow M$ starting from a line γ, there exists flat strip containing both, γ and c.)

- Since M is connected, $P_\gamma = M$.

- Therefore, \exists one line γ_q parallel to γ, through every $q \in M$.

- From the local splitting, this defines a parallel timelike vector field V on M.
Proof of Splitting Theorem

- Therefore, V^\perp is a parallel distribution, and so, it is integrable.
- Let H be the maximal integral leave through $p = \gamma(0)$.
- The map

$$j : \mathbb{R} \times H \to M, \quad j(t, q) = \gamma_q(t)$$

is the desired isometry. □
Open Problem
Prototype Singularity Theorem:

Suppose that the spacetime \((M, g)\), of dimension \(n > 2\), satisfies the following conditions:

(1) \((M, g)\) contains a compact Cauchy surface,

(2) \(\text{Ric}(v, v) \geq 0\) for all timelike \(v \in TM\),

(3) certain curvature quantity is nonzero at some point of each inextensible causal geodesic.

Then \((M, g)\) contains an incomplete causal geodesic.

¿Is there some rigidity property associated to this result?
This rigidity question is related to the following idea (Geroch’70):

Generically, inextensible closed universes satisfying Einstein equations should be timelike geodesically incomplete.

These and other ideas by Geroch were summarized by Galloway and Horta in 1995 as:

Spatially closed s-t should fail to be singular only under exceptional circumstances.

This is connection with the following conjecture formulated by Bartnik:

Suppose that the spacetime \((M, g)\), of dimension \(n > 2\), satisfies the following conditions:

1. \((M, g)\) contains a compact Cauchy surface,
2. \(\text{Ric}(v, v) \geq 0\) for all timelike \(v \in TM\).

Then either \((M, g)\) is timelike geodesically incomplete, or else \((M, g)\) splits isometrically as a product \((\mathbb{R} \times M_1, -dt^2 \oplus g_1)\), where \((M_1, g_1)\) is a compact Riemannian manifold.

Actually, Bartnik also conjectured that \(M\) must contain a constant mean curvature Cauchy surface, but this has been shown to be false!
The Bartnik’s conjecture has been proved under some additional assumptions by:

- Bartnik (1988)
- Ehrlich and Galloway (1990)
- Eschenburg and Galloway (1992)

Recently, Sharifzadeh and Bahrampour (2009) have made contributions to this problem by applying new results about the level sets of Busemann functions for spacetimes.

However, as far as I know, the conjecture remains unsolved in its full generality!
THANK YOU!!