Publications

Publicaciones del grupo http://gigda.ugr.es/pm2014/publications/?all=1&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib&rss bibtexbrowser v20101203 Compact affine manifolds with precompact holonomy are geodesically complete http://gigda.ugr.es/pm2014/?key=AkeMiguel2016&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib L. Aké, M. Sánchez. Compact affine manifolds with precompact holonomy are geodesically complete J. Math. Anal. Appl. 436 (2016) , 1369–1371. [arXiv] %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AAkeMiguel2016 Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes http://gigda.ugr.es/pm2014/?key=MR3429646&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib Jr. E. A. Lima, A. Romero. Uniqueness of complete maximal surfaces in certain Lorentzian product spacetimes J. Math. Anal. Appl. 435 (2016) no. 2 , 1352–1363. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3429646 Unchanged direction motion in general relativity: the problems of prescribing acceleration and the extensibility of trajectories http://gigda.ugr.es/pm2014/?key=MR3425188&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib D. de la Fuente, A. Romero, P. J. Torres. Unchanged direction motion in general relativity: the problems of prescribing acceleration and the extensibility of trajectories J. Math. Phys. 56 (2015) no. 11 , 112501, 13. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3425188 Complete maximal hypersurfaces in certain spatially open generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/s13398-014-0195-1 A. Romero, R. M. Rubio, J. J. Salamanca. Complete maximal hypersurfaces in certain spatially open generalized Robertson-Walker spacetimes Rev. R. Acad. Cienc. Exactas F\'\i s. Nat. Ser. A Math. RACSAM 109 (2015) no. 2 , 451–460. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3383426 Uniformly accelerated motion in General Relativity: completeness of inextensible trajectories http://dx.doi.org/10.1007/s10714-015-1879-3 D. de la Fuente, A. Romero. Uniformly accelerated motion in General Relativity: completeness of inextensible trajectories Gen. Relativity Gravitation 47 (2015) no. 4 , Art. 33, 13. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3318834 Radial solutions of the Dirichlet problem for the prescribed mean curvature equation in a Robertson-Walker spacetime http://gigda.ugr.es/pm2014/?key=MR3299388&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib D. de la Fuente, A. Romero, P. J. Torres. Radial solutions of the Dirichlet problem for the prescribed mean curvature equation in a Robertson-Walker spacetime Adv. Nonlinear Stud. 15 (2015) no. 1 , 171–181. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3299388 A new technique for the study of complete maximal hypersurfaces in certain open generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/978-4-431-55215-4_3 A. Romero. A new technique for the study of complete maximal hypersurfaces in certain open generalized Robertson-Walker spacetimes Chapter in Springer, Tyo 106 (2014) , 21–31. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3333365 Spacelike graphs of finite total curvature in certain 3-dimensional generalized Robertson-Walker spacetime http://dx.doi.org/10.1016/S0034-4877(14)60043-4 A. Romero, R. M. Rubio, J. J. Salamanca. Spacelike graphs of finite total curvature in certain 3-dimensional generalized Robertson-Walker spacetime Rep. Math. Phys. 73 (2014) no. 2 , 241–254. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3285512 New characterizations of compact totally umbilical spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime through a lightcone http://dx.doi.org/10.1007/s00009-013-0377-7 F. J. Palomo, F. J. Rodríguez, A. Romero. New characterizations of compact totally umbilical spacelike surfaces in 4-dimensional Lorentz-Minkowski spacetime through a lightcone Mediterr. J. Math. 11 (2014) no. 4 , 1229–1240. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3268819 Componentwise conformal vector fields on Riemannian almost product manifolds http://gigda.ugr.es/pm2014/?key=MR3223312&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib M. Ortega, F. J. Palomo, A. Romero. Componentwise conformal vector fields on Riemannian almost product manifolds Balkan J. Geom. Appl. 19 (2014) no. 1 , 88–99. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3223312 A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes http://dx.doi.org/10.1016/j.jmaa.2014.04.063 A. Romero, R. M. Rubio, J. J. Salamanca. A new approach for uniqueness of complete maximal hypersurfaces in spatially parabolic GRW spacetimes J. Math. Anal. Appl. 419 (2014) no. 1 , 355–372. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3217154 Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems http://dx.doi.org/10.1016/j.na.2014.04.010 J. A. Aledo, A. Romero, R. M. Rubio. Constant mean curvature spacelike hypersurfaces in Lorentzian warped products and Calabi-Bernstein type problems Nonlinear Anal. 106 (2014) , 57–69. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3209685 Estimates for the curvatures of spacelike hypersurfaces in gradient conformally stationary spacetimes http://dx.doi.org/10.1088/0264-9381/31/8/085015 J. A. Aledo, A. Romero, R. M. Rubio. Estimates for the curvatures of spacelike hypersurfaces in gradient conformally stationary spacetimes Classical Quantum Gravity 31 (2014) no. 8 , 085015, 15. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3195597 Upper and lower bounds for the volume of a compact spacelike hypersurface in a generalized Robertson-Walker spacetime http://dx.doi.org/10.1142/S0219887814500066 J. A. Aledo, A. Romero, R. M. Rubio. Upper and lower bounds for the volume of a compact spacelike hypersurface in a generalized Robertson-Walker spacetime Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 1 , 1450006, 10. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3149299 On the scalar curvature of spacelike hypersurfaces in generalized Robertson Walker spacetimes http://gigda.ugr.es/pm2014/?key=MR3433973&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib J. A. Aledo, R. M. Rubio. On the scalar curvature of spacelike hypersurfaces in generalized Robertson Walker spacetimes Differential Geom. Appl. 44 (2016) , 17–29. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3433973 Constant mean curvature spacelike surfaces in Lorentzian warped products http://dx.doi.org/10.1155/2015/761302 J. A. Aledo, R. M. Rubio. Constant mean curvature spacelike surfaces in Lorentzian warped products Adv. Math. Phys. (2015) , Art. ID 761302, 5. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3417539 Dual characterizations of the sphere and the hyperbolic space in arbitrary dimension http://dx.doi.org/10.1142/S0219887815600105 M. Caballero, R. M. Rubio. Dual characterizations of the sphere and the hyperbolic space in arbitrary dimension Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1560010, 5. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3400651 The classical Calabi-Bernstein Theorem revisited http://dx.doi.org/10.1016/j.jmaa.2015.06.030 J. A. Aledo, A. Romero, R. M. Rubio. The classical Calabi-Bernstein Theorem revisited J. Math. Anal. Appl. 431 (2015) no. 2 , 1172–1177. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3365862 The existence and uniqueness of standard static splitting http://dx.doi.org/10.1088/0264-9381/32/10/105004 J. A. Aledo, A. Romero, R. M. Rubio. The existence and uniqueness of standard static splitting Classical Quantum Gravity 32 (2015) no. 10 , 105004, 9. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3339851 Maximal surface equation on a Riemannian 2-manifold with finite total curvature http://dx.doi.org/10.1016/j.geomphys.2015.02.011 R. M. Rubio, J. J. Salamanca. Maximal surface equation on a Riemannian 2-manifold with finite total curvature J. Geom. Phys. 92 (2015) , 140–146. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3328064 Extremal curves of the total curvature in homogeneous 3-spaces http://dx.doi.org/10.1016/j.jmaa.2015.05.072 M. Barros, A. Ferrández, O. J. Garay. Extremal curves of the total curvature in homogeneous 3-spaces J. Math. Anal. Appl. 431 (2015) no. 1 , 342–364. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3357589 On the energy density of helical proteins http://dx.doi.org/10.1007/s00285-013-0752-9 M. Barros, A. Ferrández. On the energy density of helical proteins J. Math. Biol. 69 (2014) no. 6-7 , 1801–1813. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3275214 Equivariant Willmore surfaces in conformal homogeneous three spaces http://dx.doi.org/10.1016/j.jmaa.2013.07.031 M. Barros, A. Ferrández, O. J. Garay. Equivariant Willmore surfaces in conformal homogeneous three spaces J. Math. Anal. Appl. 409 (2014) no. 1 , 459–477. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3095054 Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz-Minkowski space http://dx.doi.org/10.1016/j.jde.2014.12.011 A. L. Albujer, M. Caballero, R. López. Convexity of the solutions to the constant mean curvature spacelike surface equation in the Lorentz-Minkowski space J. Differential Equations 258 (2015) no. 7 , 2364–2374. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3306342 Hausdorff separability of the boundaries for spacetimes and sequential spaces http://dx.doi.org/10.1063/1.4939485 J. L. Flores, J. Herrera, M. Sánchez. Hausdorff separability of the boundaries for spacetimes and sequential spaces J. Math. Phys. 57 (2016) no. 2 , 022503, 25. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3449216 Connectivity by geodesics in open subsets of globally hyperbolic spacetimes http://dx.doi.org/10.1142/S0219887815600099 R. Bartolo, A. M. Candela, J. L. Flores. Connectivity by geodesics in open subsets of globally hyperbolic spacetimes Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1560009, 9. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3400650 Extremal surfaces and the rigidity of null geodesic incompleteness http://dx.doi.org/10.1088/0264-9381/32/5/055010 I. P. Costa e Silva, J. L. Flores. Extremal surfaces and the rigidity of null geodesic incompleteness Classical Quantum Gravity 32 (2015) no. 5 , 055010, 22. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3313865 A fundamental theorem for hypersurfaces in semi-Riemannian warped products http://dx.doi.org/10.1016/j.geomphys.2015.01.002 M.-A Lawn, M. Ortega. A fundamental theorem for hypersurfaces in semi-Riemannian warped products J. Geom. Phys. 90 (2015) , 55–70. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3317697 Massless particles in generalized Robertson-Walker 4-spacetimes http://dx.doi.org/10.1007/s10231-013-0374-2 M. A. Cañadas-Pinedo, M. Gutiérrez, M. Ortega. Massless particles in generalized Robertson-Walker 4-spacetimes Ann. Mat. Pura Appl. (4) 194 (2015) no. 1 , 259–273. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3303015 A new characterization of the $n$-dimensional Einstein static spacetime http://dx.doi.org/10.1016/j.geomphys.2014.03.010 F. J. Palomo. A new characterization of the $n$-dimensional Einstein static spacetime J. Geom. Phys. 81 (2014) , 112–116. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3194219 Real hypersurfaces in non-flat complex space form with structure Jacobi operator of Lie-Codazzi type http://dx.doi.org/10.1007/s40840-015-0161-x G. Kaimakamis, K. Panagiotidou, J. D. Pérez. Real hypersurfaces in non-flat complex space form with structure Jacobi operator of Lie-Codazzi type Bull. Malays. Math. Sci. Soc. 39 (2016) no. 1 , 17–27. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3439846 Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space http://gigda.ugr.es/pm2014/?key=MR3419917&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib J. D. Pérez. Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space Ann. Mat. Pura Appl. (4) 194 (2015) no. 6 , 1781–1794. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3419917 Real hypersurfaces in complex two-plane Grassmannians with GTW harmonic curvature http://dx.doi.org/10.4153/CMB-2015-039-7 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians with GTW harmonic curvature Canad. Math. Bull. 58 (2015) no. 4 , 835–845. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3415673 On the Lie derivative of real hypersurfaces in $\Bbb CP^2$ and $\Bbb CH^2$ with respect to the generalized Tanaka-Webster connection http://gigda.ugr.es/pm2014/?key=MR3406024&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib K. Panagiotidou, J. D. Pérez. On the Lie derivative of real hypersurfaces in $\Bbb CP^2$ and $\Bbb CH^2$ with respect to the generalized Tanaka-Webster connection Bull. Korean Math. Soc. 52 (2015) no. 5 , 1621–1630. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3406024 The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians http://dx.doi.org/10.1142/S0129167X15500755 K. Panagiotidou, J. D. Pérez. The normal Jacobi operator of real hypersurfaces in complex hyperbolic two-plane Grassmannians Internat. J. Math. 26 (2015) no. 9 , 1550075, 14. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3391662 Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator http://dx.doi.org/10.1515/math-2015-0046 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator Open Math. 13 (2015) , 493–501. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3391385 Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space http://dx.doi.org/10.1007/s00605-015-0777-9 J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster and covariant derivatives on a real hypersurface in a complex projective space Monatsh. Math. 177 (2015) no. 4 , 637–647. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3371367 Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians http://dx.doi.org/10.1007/s10587-015-0196-z E. Pak, J. D. Pérez, Y. J. Suh. Generalized Tanaka-Webster and Levi-Civita connections for normal Jacobi operator in complex two-plane Grassmannians Czechoslovak Math. J. 65(140) (2015) no. 2 , 569–577. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3360447 A new condition on the structure Jacobi operator of real hypersurfaces in non-flat complex space forms http://dx.doi.org/10.1007/s00009-014-0415-0 G. Kaimakamis, K. Panagiotidou, J. D. Pérez. A new condition on the structure Jacobi operator of real hypersurfaces in non-flat complex space forms Mediterr. J. Math. 12 (2015) no. 2 , 525–540. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3350324 Commuting conditions of the $k$-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms http://dx.doi.org/10.1515/math-2015-0032 K. Panagiotidou, J. D. Pérez. Commuting conditions of the $k$-th Cho operator with the structure Jacobi operator of real hypersurfaces in complex space forms Open Math. 13 (2015) , 321–332. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3349349 Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection http://dx.doi.org/10.3906/mat-1403-74 J. D. Pérez, Y. J. Suh, C. Woo. Real hypersurfaces in complex two-plane Grassmannians whose shape operator is recurrent for the generalized Tanaka-Webster connection Turkish J. Math. 39 (2015) no. 3 , 313–321. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3343486 Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator http://dx.doi.org/10.1007/s10587-015-0169-2 E. Pak, J. D. Pérez, C. J. G. Machado, C. Woo. Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka-Webster parallel normal Jacobi operator Czechoslovak Math. J. 65(140) (2015) no. 1 , 207–218. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3336034 Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians http://dx.doi.org/10.1007/s10114-015-1765-7 C. J. G. Machado, J. D. Pérez, Y. J. Suh. Commuting structure Jacobi operator for real hypersurfaces in complex two-plane Grassmannians Acta Math. Sin. (Engl. Ser.) 31 (2015) no. 1 , 111–122. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3285950 The Friedmann cosmological models revisited as an harmonic motion and new exact solutions http://dx.doi.org/10.1142/S0219887814500509 R. M. Rubio, J. J. Salamanca. The Friedmann cosmological models revisited as an harmonic motion and new exact solutions Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 5 , 1450050, 13. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3208859 Myers and Hawking theorems: geometry for the limits of the universe http://dx.doi.org/10.1007/s00032-015-0241-2 Pablo Morales Álvarez, M. Sánchez. Myers and Hawking theorems: geometry for the limits of the universe Milan J. Math. 83 (2015) no. 2 , 295–311. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3412284 A note on the causal homotopy classes of a globally hyperbolic spacetime http://dx.doi.org/10.1088/0264-9381/32/19/197001 P. Morales Álvarez, M. Sánchez. A note on the causal homotopy classes of a globally hyperbolic spacetime Classical Quantum Gravity 32 (2015) no. 19 , 197001, 12. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3402449 Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] http://dx.doi.org/10.1142/S0219887815020028 M. De León, G. Marmo, M. Muñoz-Lecanda, M. Sánchez. Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1502002, 1. (Held at the University of Granada, Granada, September 2--5, 2014) MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3400647 On the completeness of trajectories for some mechanical systems http://gigda.ugr.es/pm2014/?key=MR3380061&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib M. Sánchez. On the completeness of trajectories for some mechanical systems Chapter in Geometry, mechanics, and dynamics Springer, New York 73 (2015) , 343–372. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3380061 On the definition and examples of Finsler metrics http://gigda.ugr.es/pm2014/?key=MR3331530&bib=%252Fhome%252Fwww%252Fpm2014%252Fbib%252Fmtm2013.bib M. A. Javaloyes, M. Sánchez. On the definition and examples of Finsler metrics Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) no. 3 , 813–858. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3331530 Finsler metrics and relativistic spacetimes http://dx.doi.org/10.1142/S0219887814600329 M. A. Javaloyes, M. Sánchez. Finsler metrics and relativistic spacetimes Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 9 , 1460032, 15. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3270295 An invitation to Lorentzian geometry http://dx.doi.org/10.1365/s13291-013-0076-0 O. Müller, M. Sánchez. An invitation to Lorentzian geometry Jahresber. Dtsch. Math.-Ver. 115 (2014) no. 3-4 , 153–183. MathScinet %2Fhome%2Fwww%2Fpm2014%2Fbib%2Fmtm2013.bib%3A%3AMR3158102