Investigación

Publicaciones del grupo http://gigda.ugr.es/sanchezm/investigacion/?all=1&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib&rss bibtexbrowser v20101203 On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism http://gigda.ugr.es/sanchezm/?key=Sanchez2017mogollon&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. N. Bernal, B. Janssen, A. Jiménez, A. Jiménez-Cano, J. A. Orejuela, P. Sánchez-Moreno, M. Sánchez. On the (non-)uniqueness of the Levi-Civita solution in the Einstein–Hilbert–Palatini formalism Physics Letters B 768 (2017) , 280–287. %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3ASanchez2017mogollon Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes http://gigda.ugr.es/sanchezm/?key=CaponioJavaloyesSanchez2016&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib E. Caponio, M. A. Javaloyes, M. Sánchez. Wind Finslerian structures: from Zermelo's navigation to the causality of spacetimes prepub (2016) , 80 pp.. [arXiv] %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3ACaponioJavaloyesSanchez2016 Compact affine manifolds with precompact holonomy are geodesically complete http://gigda.ugr.es/sanchezm/?key=AkeMiguel2016&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib L. Aké, M. Sánchez. Compact affine manifolds with precompact holonomy are geodesically complete J. Math. Anal. Appl. 436 (2016) , 1369–1371. [arXiv] %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AAkeMiguel2016 Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness http://dx.doi.org/10.1007/s12220-015-9572-z E. Caponio, A. V. Germinario, M. Sánchez. Convex Regions of Stationary Spacetimes and Randers Spaces. Applications to Lensing and Asymptotic Flatness J. Geom. Anal. 26 (2016) no. 2 , 791–836. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3472817 Un paseo por las geometrías del espaciotiempo en el centenario de la Relatividad General http://gigda.ugr.es/sanchezm/?key=BernalSanchez2015&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. N. Bernal, M. Sánchez. Un paseo por las geometrías del espaciotiempo en el centenario de la Relatividad General La Gaceta de la RSME (2015) no. 3 , 521–542. %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3ABernalSanchez2015 Myers and Hawking theorems: geometry for the limits of the universe http://dx.doi.org/10.1007/s00032-015-0241-2 P. Morales Álvarez, M. Sánchez. Myers and Hawking theorems: geometry for the limits of the universe Milan J. Math. 83 (2015) no. 2 , 295–311. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3412284 A note on the causal homotopy classes of a globally hyperbolic spacetime http://dx.doi.org/10.1088/0264-9381/32/19/197001 P. Morales Álvarez, M. Sánchez. A note on the causal homotopy classes of a globally hyperbolic spacetime Classical Quantum Gravity 32 (2015) no. 19 , 197001, 12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3402449 Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] http://dx.doi.org/10.1142/S0219887815020028 M. De León, G. Marmo, M. Muñoz-Lecanda, M. Sánchez. Preface [Proceedings of the XXIII International Fall Workshop on Geometry and Physics (IFWGP)] Int. J. Geom. Methods Mod. Phys. 12 (2015) no. 8 , 1502002, 1. (Held at the University of Granada, Granada, September 2--5, 2014) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3400647 On the completeness of trajectories for some mechanical systems http://gigda.ugr.es/sanchezm/?key=MR3380061&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. On the completeness of trajectories for some mechanical systems Chapter in Geometry, mechanics, and dynamics Springer, New York 73 (2015) , 343–372. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3380061 On the definition and examples of Finsler metrics http://gigda.ugr.es/sanchezm/?key=MR3331530&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. A. Javaloyes, M. Sánchez. On the definition and examples of Finsler metrics Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014) no. 3 , 813–858. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3331530 Finsler metrics and relativistic spacetimes http://dx.doi.org/10.1142/S0219887814600329 M. A. Javaloyes, M. Sánchez. Finsler metrics and relativistic spacetimes Int. J. Geom. Methods Mod. Phys. 11 (2014) no. 9 , 1460032, 15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3270295 An invitation to Lorentzian geometry http://dx.doi.org/10.1365/s13291-013-0076-0 O. Mueller, M. Sánchez. An invitation to Lorentzian geometry Jahresber. Dtsch. Math.-Ver. 115 (2014) no. 3-4 , 153–183. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3158102 Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds http://dx.doi.org/10.1090/S0065-9266-2013-00680-6 J. L. Flores, J. Herrera, M. Sánchez. Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds Mem. Amer. Math. Soc. 226 (2013) no. 1064 , vi+76. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3136021 Completeness of trajectories of relativistic particles under stationary magnetic fields http://dx.doi.org/10.1142/S0219887813600074 A. M. Candela, A. Romero, M. Sánchez. Completeness of trajectories of relativistic particles under stationary magnetic fields Int. J. Geom. Methods Mod. Phys. 10 (2013) no. 8 , 1360007, 8. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3092557 Completeness of the trajectories of particles coupled to a general force field http://dx.doi.org/10.1007/s00205-012-0596-2 A. M. Candela, A. Romero, M. Sánchez. Completeness of the trajectories of particles coupled to a general force field Arch. Ration. Mech. Anal. 208 (2013) no. 1 , 255–274. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3021548 Structure of second-order symmetric Lorentzian manifolds http://dx.doi.org/10.4171/JEMS/368 O. F. Blanco, M. Sánchez, J. M. M. Senovilla. Structure of second-order symmetric Lorentzian manifolds J. Eur. Math. Soc. (JEMS) 15 (2013) no. 2 , 595–634. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3017046 Causal boundary of spacetimes: revision and applications to AdS/CFT correspondence http://dx.doi.org/10.1007/978-3-0348-0043-3_6 J. L. Flores, J. Herrera, M. Sánchez. Causal boundary of spacetimes: revision and applications to AdS/CFT correspondence Chapter in Quantum field theory and gravity Birkhäuser/Springer Basel AG, Basel (2012) , 97–119. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR3074848 On the final definition of the causal boundary and its relation with the conformal boundary http://projecteuclid.org/euclid.atmp/1339438350 J. L. Flores, J. Herrera, M. Sánchez. On the final definition of the causal boundary and its relation with the conformal boundary Adv. Theor. Math. Phys. 15 (2011) no. 4 , 991–1057. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2929681 Differential geometry and its applications: some recent advances by the research group http://gigda.ugr.es/sanchezm/?key=MR2953859&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. Romero, M. Sánchez. Differential geometry and its applications: some recent advances by the research group Chapter in Florentino García Santos: in memoriam Editorial Universidad de Granada, Granada (2011) , 157–170. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2953859 On the interplay between Lorentzian causality and Finsler metrics of Randers type http://dx.doi.org/10.4171/RMI/658 E. Caponio, M. A. Javaloyes, M. Sánchez. On the interplay between Lorentzian causality and Finsler metrics of Randers type Rev. Mat. Iberoam. 27 (2011) no. 3 , 919–952. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2895339 Recent progress on the notion of global hyperbolicity http://gigda.ugr.es/sanchezm/?key=MR2867856&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. Recent progress on the notion of global hyperbolicity Chapter in Advances in Lorentzian geometry Amer. Math. Soc., Providence, RI 49 (2011) , 105–124. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2867856 Isocausal spacetimes may have different causal boundaries http://dx.doi.org/10.1088/0264-9381/28/17/175016 J. L. Flores, J. Herrera, M. Sánchez. Isocausal spacetimes may have different causal boundaries Classical Quantum Gravity 28 (2011) no. 17 , 175016, 9. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2837313 Lorentzian manifolds isometrically embeddable in $\Bbb L^N$ http://dx.doi.org/10.1090/S0002-9947-2011-05299-2 O. Mueller, M. Sánchez. Lorentzian manifolds isometrically embeddable in $\Bbb L^N$ Trans. Amer. Math. Soc. 363 (2011) no. 10 , 5367–5379. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2813419 Convex domains of Finsler and Riemannian manifolds http://dx.doi.org/10.1007/s00526-010-0343-1 R. Bartolo, E. Caponio, A. V. Germinario, M. Sánchez. Convex domains of Finsler and Riemannian manifolds Calc. Var. Partial Differential Equations 40 (2011) no. 3-4 , 335–356. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2764910 Causal boundaries and holography on wave type spacetimes http://dx.doi.org/10.1016/j.na.2009.02.101 M. Sánchez. Causal boundaries and holography on wave type spacetimes Nonlinear Anal. 71 (2009) no. 12 , e1744–e1764. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2671953 Geodesics in semi-Riemannian manifolds: geometric properties and variational tools http://dx.doi.org/10.4171/051-1/10 A. M. Candela, M. Sánchez. Geodesics in semi-Riemannian manifolds: geometric properties and variational tools Chapter in Recent developments in pseudo-Riemannian geometry Eur. Math. Soc., Zürich (2008) , 359–418. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2436236 The causal hierarchy of spacetimes http://dx.doi.org/10.4171/051-1/9 E. Minguzzi, M. Sánchez. The causal hierarchy of spacetimes Chapter in Recent developments in pseudo-Riemannian geometry Eur. Math. Soc., Zürich (2008) , 299–358. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2436235 A note on the existence of standard splittings for conformally stationary spacetimes http://dx.doi.org/10.1088/0264-9381/25/16/168001 M. A. Javaloyes, M. Sánchez. A note on the existence of standard splittings for conformally stationary spacetimes Classical Quantum Gravity 25 (2008) no. 16 , 168001, 7. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2429739 The causal boundary of wave-type spacetimes http://dx.doi.org/10.1088/1126-6708/2008/03/036 J. L. Flores, M. Sánchez. The causal boundary of wave-type spacetimes J. High Energy Phys. (2008) no. 3 , 036, 43. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2391084 Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes http://dx.doi.org/10.1016/j.aim.2008.01.004 A. M. Candela, J. L. Flores, M. Sánchez. Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes Adv. Math. 218 (2008) no. 2 , 515–536. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2407945 A note on the uniqueness of global static decompositions http://dx.doi.org/10.1088/0264-9381/24/23/N01 M. Sánchez, J. M. M. Senovilla. A note on the uniqueness of global static decompositions Classical Quantum Gravity 24 (2007) no. 23 , 6121–6126. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2371928 Globally hyperbolic spacetimes can be defined as `causal' instead of `strongly causal' http://dx.doi.org/10.1088/0264-9381/24/3/N01 A. N. Bernal, M. Sánchez. Globally hyperbolic spacetimes can be defined as `causal' instead of `strongly causal' Classical Quantum Gravity 24 (2007) no. 3 , 745–749. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2294243 Cauchy hypersurfaces and global Lorentzian geometry http://gigda.ugr.es/sanchezm/?key=MR2368508&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. Cauchy hypersurfaces and global Lorentzian geometry Chapter in XIV Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 10 (2006) , 143–163. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2368508 Erratum: ``Connecting solutions of the Lorentz force equation do exist'' [Comm. Math. Phys. \bf 264 (2006), no. 2, 349--370; \refcno 2215609] http://dx.doi.org/10.1007/s00220-006-0064-7 E. Minguzzi, M. Sánchez. Erratum: ``Connecting solutions of the Lorentz force equation do exist'' [Comm. Math. Phys. \bf 264 (2006), no. 2, 349--370; \refcno 2215609] Comm. Math. Phys. 267 (2006) no. 2 , 559–561. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2249781 Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions http://dx.doi.org/10.1007/s11005-006-0091-5 A. N. Bernal, M. Sánchez. Further results on the smoothability of Cauchy hypersurfaces and Cauchy time functions Lett. Math. Phys. 77 (2006) no. 2 , 183–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2254187 On the geometry of pp-wave type spacetimes http://dx.doi.org/10.1007/3-540-33484-X_4 J. L. Flores, M. Sánchez. On the geometry of pp-wave type spacetimes Chapter in Analytical and numerical approaches to mathematical relativity Springer, Berlin 692 (2006) , 79–98. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2222548 Connecting solutions of the Lorentz force equation do exist http://dx.doi.org/10.1007/s00220-006-1547-2 E. Minguzzi, M. Sánchez. Connecting solutions of the Lorentz force equation do exist Comm. Math. Phys. 264 (2006) no. 2 , 349–370. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2215609 On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes http://dx.doi.org/10.1016/j.difgeo.2005.06.008 M. Sánchez. On causality and closed geodesics of compact Lorentzian manifolds and static spacetimes Differential Geom. Appl. 24 (2006) no. 1 , 21–32. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2193746 Causal hierarchy of spacetimes, temporal functions and smoothness of Geroch's splitting. A revision http://gigda.ugr.es/sanchezm/?key=MR2196783&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. Causal hierarchy of spacetimes, temporal functions and smoothness of Geroch's splitting. A revision Mat. Contemp. 29 (2005) , 127–155. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2196783 Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples http://dx.doi.org/10.1088/0264-9381/22/21/009 A. Garc\'\ia-Parrado, M. Sánchez. Further properties of causal relationship: causal structure stability, new criteria for isocausality and counterexamples Classical Quantum Gravity 22 (2005) no. 21 , 4589–4619. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2177456 Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes http://dx.doi.org/10.1007/s00220-005-1346-1 A. N. Bernal, M. Sánchez. Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes Comm. Math. Phys. 257 (2005) no. 1 , 43–50. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2163568 A classical problem of existence of critical curves with fixed extremes for a Lagrangian http://gigda.ugr.es/sanchezm/?key=MR2123565&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. M. Candela, J. L. Flores, M. Sánchez. A classical problem of existence of critical curves with fixed extremes for a Lagrangian In Proceedings of the XI Fall Workshop on Geometry and Physics R. Soc. Mat. Esp., Madrid 6 (2004) , 57–66. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2123565 Geodesic connectedness in plane wave type spacetimes. A variational approach http://gigda.ugr.es/sanchezm/?key=MR2117818&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. M. Candela, J. L. Flores, M. Sánchez. Geodesic connectedness in plane wave type spacetimes. A variational approach Chapter in Dynamic systems and applications. Vol. 4 Dynamic, Atlanta, GA (2004) , 458–464. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2117818 Orthogonal trajectories on stationary spacetimes under intrinsic assumptions http://gigda.ugr.es/sanchezm/?key=MR2114909&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib R. Bartolo, A. Germinario, M. Sánchez. Orthogonal trajectories on stationary spacetimes under intrinsic assumptions Topol. Methods Nonlinear Anal. 24 (2004) no. 2 , 239–268. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2114909 Trajectories connecting two submanifolds on a non-complete Lorentzian manifold http://gigda.ugr.es/sanchezm/?key=MR2036194&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib R. Bartolo, A. Germinario, M. Sánchez. Trajectories connecting two submanifolds on a non-complete Lorentzian manifold Electron. J. Differential Equations (2004) , No. 10, 20. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2036194 On smooth Cauchy hypersurfaces and Geroch's splitting theorem http://dx.doi.org/10.1007/s00220-003-0982-6 A. N. Bernal, M. Sánchez. On smooth Cauchy hypersurfaces and Geroch's splitting theorem Comm. Math. Phys. 243 (2003) no. 3 , 461–470. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2029362 A quadratic Bolza-type problem in a non-complete Riemannian manifold http://gigda.ugr.es/sanchezm/?key=MR2018114&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. M. Candela, J. L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold Discrete Contin. Dyn. Syst. (2003) no. suppl. , 173–181. (Dynamical systems and differential equations (Wilmington, NC, 2002)) MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2018114 Geodesics in static Lorentzian manifolds with critical quadratic behavior http://gigda.ugr.es/sanchezm/?key=MR2017243&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib R. Bartolo, A. M. Candela, J. L. Flores, M. Sánchez. Geodesics in static Lorentzian manifolds with critical quadratic behavior Adv. Nonlinear Stud. 3 (2003) no. 4 , 471–494. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2017243 A quadratic Bolza-type problem in a Riemannian manifold http://dx.doi.org/10.1016/S0022-0396(03)00064-0 A. M. Candela, J. L. Flores, M. Sánchez. A quadratic Bolza-type problem in a Riemannian manifold J. Differential Equations 193 (2003) no. 1 , 196–211. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1994064 Causality and conjugate points in general plane waves http://dx.doi.org/10.1088/0264-9381/20/11/322 J. L. Flores, M. Sánchez. Causality and conjugate points in general plane waves Classical Quantum Gravity 20 (2003) no. 11 , 2275–2291. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1984973 On general plane fronted waves. Geodesics http://dx.doi.org/10.1023/A:1022962017685 A. M. Candela, J. L. Flores, M. Sánchez. On general plane fronted waves. Geodesics Gen. Relativity Gravitation 35 (2003) no. 4 , 631–649. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1971289 Leibnizian, Galilean and Newtonian structures of space-time http://dx.doi.org/10.1063/1.1541120 A. N. Bernal, M. Sánchez. Leibnizian, Galilean and Newtonian structures of space-time J. Math. Phys. 44 (2003) no. 3 , 1129–1149. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1958259 Geodesics in stationary spacetimes. Application to Kerr spacetime http://gigda.ugr.es/sanchezm/?key=MR2128502&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib J. L. Flores, M. Sánchez. Geodesics in stationary spacetimes. Application to Kerr spacetime Int. J. Theor. Phys. Group Theory Nonlinear Opt. 8 (2002) no. 3 , 319–336. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR2128502 Geodesic connectedness of multiwarped spacetimes http://dx.doi.org/10.1016/S0022-0396(02)00004-9 J. L. Flores, M. Sánchez. Geodesic connectedness of multiwarped spacetimes J. Differential Equations 186 (2002) no. 1 , 1–30. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1941090 Projective vector fields on Lorentzian manifolds http://dx.doi.org/10.1023/A:1020308012870 A. Romero, M. Sánchez. Projective vector fields on Lorentzian manifolds Geom. Dedicata 93 (2002) , 95–105. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1934690 A topological method for geodesic connectedness of space-times: outer Kerr space-time http://dx.doi.org/10.1063/1.1506403 J. L. Flores, M. Sánchez. A topological method for geodesic connectedness of space-times: outer Kerr space-time J. Math. Phys. 43 (2002) no. 10 , 4861–4885. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1927337 Periodic trajectories in Gödel type space-times http://dx.doi.org/10.1016/S0362-546X(01)00846-X A. M. Candela, A. Salvatore, M. Sánchez. Periodic trajectories in Gödel type space-times Nonlinear Anal. 51 (2002) no. 4, Ser. A: Theory Methods , 607–631. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1920340 A note on the boundary of a static Lorentzian manifold http://dx.doi.org/10.1016/S0926-2245(02)00062-1 R. Bartolo, A. Germinario, M. Sánchez. A note on the boundary of a static Lorentzian manifold Differential Geom. Appl. 16 (2002) no. 2 , 121–131. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1893903 Convexity of domains of Riemannian manifolds http://dx.doi.org/10.1023/A:1014231603588 R. Bartolo, A. Germinario, M. Sánchez. Convexity of domains of Riemannian manifolds Ann. Global Anal. Geom. 21 (2002) no. 1 , 63–83. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1889250 Fundamental units of length and time http://dx.doi.org/10.1023/A:1013800914617 A. N. Bernal, M. P. López, M. Sánchez. Fundamental units of length and time Found. Phys. 32 (2002) no. 1 , 77–108. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1885734 Existence of a closed geodesic on non-compact Riemannian manifolds with boundary http://gigda.ugr.es/sanchezm/?key=MR1881999&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib R. Bartolo, A. Germinario, M. Sánchez. Existence of a closed geodesic on non-compact Riemannian manifolds with boundary Adv. Nonlinear Stud. 2 (2002) no. 1 , 51–69. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1881999 Geodesic connectedness of semi-Riemannian manifolds http://dx.doi.org/10.1016/S0362-546X(01)00427-8 M. Sánchez. Geodesic connectedness of semi-Riemannian manifolds In Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000) 47 (2001) no. 5 , 3085–3102. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1979206 Existence of geodesics in Gödel type space-times http://dx.doi.org/10.1016/S0362-546X(01)00292-9 A. M. Candela, M. Sánchez. Existence of geodesics in Gödel type space-times In Proceedings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000) 47 (2001) no. 3 , 1581–1592. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1977042 Remarks on some variational problems on non-complete manifolds http://dx.doi.org/10.1016/S0362-546X(01)00410-2 R. Bartolo, M. Sánchez. Remarks on some variational problems on non-complete manifolds In Proceedings of the Third World Congress of Nonlinear Analysts, Part 4 (Catania, 2000) 47 (2001) no. 4 , 2887–2892. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1972414 Geodesic connectedness in some Lorentz manifolds http://gigda.ugr.es/sanchezm/?key=MR1939521&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib J. L. Flores, M. Sánchez. Geodesic connectedness in some Lorentz manifolds In Proceedings of the VIII Fall Workshop on Geometry and Physics (Spanish) (Medina del Campo, 1999) R. Soc. Mat. Esp., Madrid 2 (2001) , 93–106. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1939521 Geodesic connectedness and conjugate points in GRW space-times http://dx.doi.org/10.1016/S0393-0440(00)00027-9 J. L. Flores, M. Sánchez. Geodesic connectedness and conjugate points in GRW space-times J. Geom. Phys. 36 (2000) no. 3-4 , 285–314. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1793013 Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries http://gigda.ugr.es/sanchezm/?key=MR1791221&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in spacetimes with symmetries In Proceedings of the 7th Autumn Conference on Differential Geometry and its Applications (Spanish) (Valencia, 1998) R. Soc. Mat. Esp., Madrid 1 (2000) , 1–14. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1791221 Some semi-Riemannian volume comparison theorems http://dx.doi.org/10.2748/tmj/1178207817 P. E. Ehrlich, M. Sánchez. Some semi-Riemannian volume comparison theorems Tohoku Math. J. (2) 52 (2000) no. 3 , 331–348. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1772801 Geodesic connectedness in Gödel type space-times http://dx.doi.org/10.1016/S0926-2245(99)00039-X A. M. Candela, M. Sánchez. Geodesic connectedness in Gödel type space-times Differential Geom. Appl. 12 (2000) no. 2 , 105–120. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1758844 On the variety of two-dimensional Lorentzian scalar products http://gigda.ugr.es/sanchezm/?key=MR1780779&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib R. Ram\'\irez, M. Sánchez. On the variety of two-dimensional Lorentzian scalar products Rev. Acad. Canaria Cienc. 11 (1999) no. 1-2 , 23–27. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1780779 Closed and $T$-periodic geodesics in Lorentzian manifolds http://gigda.ugr.es/sanchezm/?key=MR1746295&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. Closed and $T$-periodic geodesics in Lorentzian manifolds Chapter in Relativity and gravitation in general (Salamanca, 1998) World Sci. Publ., River Edge, NJ (1999) , 309–313. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1746295 Periodic trajectories with fixed energy on Riemannian and Lorentzian manifolds with boundary http://dx.doi.org/10.1007/BF02505911 R. Bartolo, A. Germinario, M. Sánchez. Periodic trajectories with fixed energy on Riemannian and Lorentzian manifolds with boundary Ann. Mat. Pura Appl. (4) 177 (1999) , 241–262. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1747633 On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields http://dx.doi.org/10.1016/S0393-0440(98)00061-8 M. Sánchez. On the geometry of generalized Robertson-Walker spacetimes: curvature and Killing fields J. Geom. Phys. 31 (1999) no. 1 , 1–15. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1704817 Geodesics in static spacetimes and $t$-periodic trajectories http://dx.doi.org/10.1016/S0362-546X(97)00683-4 M. Sánchez. Geodesics in static spacetimes and $t$-periodic trajectories Nonlinear Anal. 35 (1999) no. 6, Ser. A: Theory Methods , 677–686. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1663623 Timelike periodic trajectories in spatially compact Lorentz manifolds http://dx.doi.org/10.1090/S0002-9939-99-04979-5 M. Sánchez. Timelike periodic trajectories in spatially compact Lorentz manifolds Proc. Amer. Math. Soc. 127 (1999) no. 10 , 3057–3066. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1616609 Bochner's technique on Lorentzian manifolds and infinitesimal conformal symmetries http://dx.doi.org/10.2140/pjm.1998.186.141 A. Romero, M. Sánchez. Bochner's technique on Lorentzian manifolds and infinitesimal conformal symmetries Pacific J. Math. 186 (1998) no. 1 , 141–148. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1665060 On the geometry of generalized Robertson-Walker spacetimes: geodesics http://dx.doi.org/10.1023/A:1026664209847 M. Sánchez. On the geometry of generalized Robertson-Walker spacetimes: geodesics Gen. Relativity Gravitation 30 (1998) no. 6 , 915–932. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1617862 Some remarks on causality theory and variational methods in Lorenzian manifolds http://gigda.ugr.es/sanchezm/?key=MR1609616&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. Some remarks on causality theory and variational methods in Lorenzian manifolds Conf. Semin. Mat. Univ. Bari (1997) no. 265 , ii+12. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1609616 Spacelike hypersurfaces of constant mean curvature in certain spacetimes http://dx.doi.org/10.1016/S0362-546X(97)00246-0 L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in certain spacetimes In Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996) 30 (1997) no. 1 , 655–661. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1489832 Lorentzian manifolds admitting a Killing vector field http://dx.doi.org/10.1016/S0362-546X(97)00041-2 M. Sánchez. Lorentzian manifolds admitting a Killing vector field In Proceedings of the Second World Congress of Nonlinear Analysts, Part 1 (Athens, 1996) 30 (1997) no. 1 , 643–654. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1489831 Geodesic connectedness in generalized Reissner-Nordström type Lorentz manifolds http://dx.doi.org/10.1023/A:1018824709846 M. Sánchez. Geodesic connectedness in generalized Reissner-Nordström type Lorentz manifolds Gen. Relativity Gravitation 29 (1997) no. 8 , 1023–1037. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1466072 Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems http://dx.doi.org/10.2748/tmj/1178225107 L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems Tohoku Math. J. (2) 49 (1997) no. 3 , 337–345. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1464181 Structure of Lorentzian tori with a Killing vector field http://dx.doi.org/10.1090/S0002-9947-97-01745-5 M. Sánchez. Structure of Lorentzian tori with a Killing vector field Trans. Amer. Math. Soc. 349 (1997) no. 3 , 1063–1080. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1376554 An integral inequality on compact Lorentz manifolds, and its applications http://dx.doi.org/10.1112/blms/28.5.509 A. Romero, M. Sánchez. An integral inequality on compact Lorentz manifolds, and its applications Bull. London Math. Soc. 28 (1996) no. 5 , 509–513. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1396153 An introduction to the completeness of compact semi-Riemannian manifolds http://gigda.ugr.es/sanchezm/?key=MR1715955&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib M. Sánchez. An introduction to the completeness of compact semi-Riemannian manifolds Chapter in Séminaire de Théorie Spectrale et Géométrie, No. 13, Année 1994--1995 Univ. Grenoble I, Saint-Martin-d'Hères 13 (1995) , 37–53. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1715955 Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes http://gigda.ugr.es/sanchezm/?key=MR1434487&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib L. J. Alías, A. Romero, M. Sánchez. Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes Chapter in Geometry and topology of submanifolds, VII (Leuven, 1994/Brussels, 1994) World Sci. Publ., River Edge, NJ (1995) , 67–70. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1434487 Geodesic completeness and conformal Lorentzian moduli space on the torus http://gigda.ugr.es/sanchezm/?key=MR1357432&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. Romero, M. Sánchez. Geodesic completeness and conformal Lorentzian moduli space on the torus Chapter in Differential geometry and its applications (Granada, 1994) CIEMAT, Madrid 2 (1995) , 189–197. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1357432 Spacelike hypersurfaces of constant mean curvature in spatially closed Lorentzian manifolds http://gigda.ugr.es/sanchezm/?key=MR1357431&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib L. J. Alías, A. Romero, M. Sánchez. Spacelike hypersurfaces of constant mean curvature in spatially closed Lorentzian manifolds Chapter in Differential geometry and its applications (Granada, 1994) CIEMAT, Madrid 2 (1995) , 177–187. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1357431 Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes http://dx.doi.org/10.1007/BF02105675 L. J. Alías, A. Romero, M. Sánchez. Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes Gen. Relativity Gravitation 27 (1995) no. 1 , 71–84. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1310212 Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field http://dx.doi.org/10.2307/2160582 A. Romero, M. Sánchez. Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field Proc. Amer. Math. Soc. 123 (1995) no. 9 , 2831–2833. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1257122 On completeness of compact Lorentzian manifolds http://gigda.ugr.es/sanchezm/?key=MR1315099&bib=%252Fhome%252Fwww%252Fbibdata%252Fsanchezm-todo.bib A. Romero, M. Sánchez. On completeness of compact Lorentzian manifolds Chapter in Geometry and topology of submanifolds, VI (Leuven, 1993/Brussels, 1993) World Sci. Publ., River Edge, NJ (1994) , 171–182. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1315099 On completeness of certain families of semi-Riemannian manifolds http://dx.doi.org/10.1007/BF01264047 A. Romero, M. Sánchez. On completeness of certain families of semi-Riemannian manifolds Geom. Dedicata 53 (1994) no. 1 , 103–117. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1299888 New properties and examples of incomplete Lorentzian tori http://dx.doi.org/10.1063/1.530584 A. Romero, M. Sánchez. New properties and examples of incomplete Lorentzian tori J. Math. Phys. 35 (1994) no. 4 , 1992–1997. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1267937 On the completeness of geodesics obtained as a limit http://dx.doi.org/10.1063/1.530057 A. Romero, M. Sánchez. On the completeness of geodesics obtained as a limit J. Math. Phys. 34 (1993) no. 8 , 3768–3774. MathScinet %2Fhome%2Fwww%2Fbibdata%2Fsanchezm-todo.bib%3A%3AMR1230550

Published on  March 29th, 2016